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Preface

To solve the problems that modern science and technolo-
gy pose, specialists must not only possess a certain vol-
ume of knowledge but must be able to freely apply this
knowledge. The aim of the present collection of questions
and problems is to develop practical skills during study
of one of the fundamental sciences, physics. The Collec-
tion is intended for the self-instruction of students of
technical colleges. The best way to use it is to solve the
problems while preparing for term exams.

The Collection contains more than 400 questions and
problems covering all the sections of the physics course.
All questions and problems have detailed answers and
solutions. For this reason the two main sections of the
book, Questions and Problems and Answers and Solu-
tions, have identical headings and numbering: each chapter
in the first section has a corresponding chapter in the sec-
ond, and the numbering of answers corresponds to the
numbering of problems.

A special feature of the Collection is the drawings and
diagrams for most of the questions and answers. The
diagrams use a variety of scales: linear, semilog, log-log,
and quadratic.

Arrangement of the material in this Collectiorn corres-
ponds to the structure most commonly used in college
physics textbooks. One exception is the questions and
problems involving the special theory of relativity. These
are placed in different chapters, starting from the one
dealing with mechanics.

_ While preparing the manuscript, I received many sugges-
tions and comments from institutions of higher learn-
ing in Leningrad, Moscow, and Tomsk. I take this
opportunity to thank all who helped to improve this
book. I am particularly grateful to Professors I. A. Ya-
kovlev, B. M. Smirnov, V. A. Fabrikant, and S. Ya. Shats.
I would also like to thank Prof. A. G. Chertov and the
Depx.artment of General Physics at the Moscow Physical
Engineering Institute for most useful comments offered
while reviewing this book.

L. A. Sena
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A drawing is the source and soul
of every image and the root of every
science.”

Michelangelo

Introduction

The student put down his record book and picked up an
examination card. Upon reading it, he gasped: “My Godl
What will I do?” Judging by his face, one would think
he held at the very least a poisonous snake. The assign-
ment on the card read: “The velocity distribution of mol-
ecules; the Maxwellian curve.” The student was not re-
quired to derive the formula or even write out the formu-
1a. All he had to do was to draw the curve and explain its
physical meaning. Another student, in drawing the van
der Waals isotherm depicted something resembling a ca-
mel with two humps; moreover, the curve passed through
the origin. Still another student, while explaining the
idea behind the Stern experiment, made the outer cylin-
der rotate while the inner cylinder remained fixed. Fi-
nally, to the question of how the temperature of a gas
changes under adiabatic expansion a student gave the
following “reasonable” answer: since objects expand when
heated, and the gas expanded in the experiment, the
temperature must have risen.

Unfortunately, examples of such answers abound. We
are not speaking of the excellent student or even of the
average student, of course. Yet it can be said without
exaggeration that for many students “qualitative” ques-
tions and problems present many more difficulties than
the derivation of formulas. The situation is especially
bad with the building of diagrams and sketching of exper-
iments. College instructors and lecturers often complain
of the low level of school instruction, but complaints are
of no help. Hence, it is essential to develop a student’s
creative thinking and ability to analyze physical phe-
nomena.

It was this that prompted me to draw on more than a
half-century of instruction at colleges in Leningrad and
compile the present collection of questions and problems.
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The book was conceived literally as a teaching aid; it is
intended to help the student in the physics course at the
freshman level. The main emphasis is on the use of dia-
grams and sketches. A drawing makes the essence of a
problem clearer and assists the development of “qualita-
tive” thinking. That is why I have chosen Michelangelo’s
remarkable words for the epigraph to this work.

The questions and problems found here encompass prac-
tically all sections of the physics course studied in a
technical college. Since some colleges give greater stress
to certain topics, the book includes a number of ques-
tions and problems intended for a well-prepared student.
This feature makes it possible to use the book to some
extent in the physics departments of universities and
the physics and mathematics departements of teachers’
colleges. On the other hand, some problems require only
knowledge within the scope of secondary school, though
these are usually not considered in the school syllabus in
such form.

All questions and problems have detailed answers and
solutions. At times a variety of solutions are given. One
may be based on dimensionality considerations, while
another is achieved through direct integration. The major-
ity of answers and solutions are analyzed and discussed.
Sometimes practical applications are given to show how
anddwhere the specific phenomena and laws are encoun-
tered.

In compiling this collection I did not aim at selecting
the most difficult or the least difficult questions and
problems. The range of difficulty is considerable. The
book is structured in such a way that all students, from
the well-prepared to the not-so-well-prepared, can use it.
If a student is not able to answer a question or solve a
problem without help, a careful study of the solution
will help him to master the theory involved and solve on
his own at first the simpler problems and then the more
complicated. A well-prepared student will be able to
solve most of the problems, but even he will find it
helpful to compare his solution with the one given in the
bOIOk and to read the accompanying discussion of the re-
sults.

To answer the questions it is sufficient at times to read
the question, glance at the diagram, and write the approp-
riate formula. On the other hand, some problems require

8
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constructing a diagram or even reconstructing the diagram
accompanying the problem. Others necessitate making
simple mathematical transformations, still others solving
the problem in general form, using the necessary con-
cepts of mathematics.

In this connection the question of the role and necessa-
ry level of mathematical knowledge arises. I have as-
sumed that what the student learns in the accompanying
mathematical course may and must be employed when
necessary. I object to what is jokingly called the “formu-
lization” of physics, but I also object to ignoring the
possibilities offered by mathematics. A knowledge of
mathematics is essential for a study of special disciplines.
And, vice versa, a study of these disciplines isextremely
useful for a deeper understanding of mathematical con-
cepts and methods. Bearing all this in mind, I have set
as the “upper limit” the use of the most simple ordinary
differential equations of an order no higher than the
second.

Notwithstanding the great convenience of the symbol-
ic method in the theory of oscillations and the theory of
alternating currents, the respective problems have been
solved by the common trigonometric method with occa-
sional employment of the vector concept. This is done
for the simple reason that the symbolic method is not
studied in the course of general physics in most technical
colleges, and justifiably, I believe, because for first-year
students the method is too formal and lacks pictorial
clarity.
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Questions and Problems

1. Fundamentals of Mechanics

1.1. A wind is blowing with a constant velocity v in the
direction denoted by the arrow in the figure. Two air-
planes start out from a point A and fly with a constant
speed c. One flies against the wind to a point B and then
returns to point 4, while the other flies in the direction
perpendicular to the wind to a point C and then returns
to point A. The distances AB and AC are the same.

¢ AN N
|
|
|
|
|
|

A\
Fig. 1.1 Fig. 1.2
Which plane will return to point A first and what will be

the ratio of the flight times of the two planes?

1.2. A boat is moving across a river whose waters flow
with a velocity u. The velocity of the boat with respect
to the current, v,, is directed at an angle a to the line
perpendicular to the current. What will be the angle 0 at
which the boat moves with respect to this line? What
will be the velocity v of the boat with respect to the river
banks? What should be the angle at which the boat moves
directly across the current with given w and v?

1.3. From a point A on a bank of a channel with still
waters a person must get to a point B on the opposite
bank. All the distances are shown in the figure. The per-
son uses a boat to travel across the channel and then

0
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walks along the bank to point B. The velocity of the
boat is v; and the velocity of the walking person is v,.
Prove that the fastest way for the person to get from A

Fig. 1.3

to B is to select the angles a; and @, in such a manner
that (sin a,/(sin a,) = v,/v,.

1.4. An object slides without friction down an inclined
plane from a point B to a point C that is distant a from

B8
[ S

c
i a
Fig. 1.4 Fig. 1.5

a point A. At what height 2 (or at what angle @) is the
sliding time minimal?

1.5. The time dependence of the lengths of the paths of
two bodies moving in a straight line is given by curves a
and b, respectively. What curve corresponds to accelerat-
ed motion and what curve to decelerated motion?

1.6. A material particle is moving along a straight line
in such a manner that its velocity varies as shown in the
ﬁgurq. At which moment in time numbered successively on
the time axis will the acceleration of the particle be max-
lmal? How should one use the graph to determine the

1



average velocity of motion over the time interval from
t; to t,?

1.7. The velocity of a particle moving in a straight line
varies with time in such a manner that the v vs. ¢ curve

v VV o
(.
by by
! | 0
12 It 4 t t
Fig. 1.6 Fig. 1.7

is represented by one half of an ellipse. The maximal ve-
locity is vy, and the total time of motion is t. What is
the path traversed by the particle and the average veloci-
ty over t? Can such motion actually occur?
1.8. The velocity of a particle decreases in relation to
the path traversed according to the linear law v = v, —
azx. After what time will the particle get to a point B
v

v .

A

Fig. 1.8 Fig. 1.9

that lies on the axis of abscissas distant z,, from the ori~
gin of coordinates?

1.9. The velocity of a particle moving in a straight line
increases according to the linear law v = v, + kz. How
does the acceleration change in the course of such mo-
tion? Does it increase or decrease or stay constant?
1.10. The figure shows the “timetable” of a train, the de-
pendence of the speed of the train on the distance trav-
eled. How can this graph be used to determine the average
speed over the time interval it took the train to travel
the entire distance?

12
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1.11. A rod of length I leans by its upper end against a
smooth vertical wall, while its other end leans against
the floor. The end that leans against the wall moves uni-

y 2
v l.
’ / \ Vx
—
) X 90 X

Fig. 1.10 Fig. 1.11

formly downward. Will the other end move uniformly,
too?

1.12. An object is thrown upward with an initial veloc-
ity v,. The drag on the object is assumed to be propor-
tional to the velocity. What time will it take the object
to move upward and what maximal altitude will it
reach?

1.13. At a certain moment in time the angle between
the velocity vector v of a material particle and the acce-

v v
y_ 8 CS -
i w

w (a) (b)
A v < J 3
€]
[ (d)
Fig. 1.13 Fig. 1.14

leration vector w of that particle is 8. What will be the
motion of the particle at this moment for different 0’s:
rectilinear or curvilinear, accelerated or uniform or de-
celerated?

1.44. A particle is moving along an expanding spiral in
such a manner that the particle’s normal acceleration
remains constant. How will the linear and angular veloc-
ities change in the process?

13



1.15. A particle is moving in a circular orbit with a
constant tangential acceleration. After a certain time ¢
has elapsed after the beginning of motion, the angle be-
tween the total acceleration w and the direction along
the radius R becomes equal to 45°. What is the angular
acceleration of the particle?

1.16. An object is thrown at an angle o to the horizon-
tal (0° << a << 90°) with a velocity v,. How do the nor-

Fig. 1.15 Fig. 1.16

mal acceleration w, and the tangential acceleration wy
vary in the process of ascent if the drag is ignored?

1.17. At the foot of a hill a certain velocity is imparted
to a sled, as a result of which the sled moves up the hill

N

Flg. 1.17 Fig. 1.18

to a point A and then down the hill. What are the direc-
tions of the normal and tangential components of the
acceleration at point A?

1.18. An object moves without friction along a concave
surface. What are the directions of the normal and tan-
gential components of the acceleration at the lowest pos-
sible point?

1.19. A stunt rider on a unicycle is riding around the
arena of a circus in a circle of radius R. The radius of the
wheel of the unicycle is r and the angular velocity with

14
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which the wheel rotates is w. What is the angular accele-
ration of the wheel? (Ignore the fact that the wheel axisis
inclined.)

1.20. A liquid has been poured into a cylindrical vessel
of mass M (the mass of the vessel bottom can be ighored)
and height H. The linear density of the liquid, that is, the
ratio of the mass of the liquid column to its height, is §.

{ w
<R ¥
- | :
Al N |
R — ] !
~ it
¢ - ¥ - |
Fig. 1.19 Fig. 1.20 Fig. 1.21

What is the height z of the column of liquid at which the
common center of gravity of the liquid plus the vessel is
in the lowest position?

1.21. A cone-shaped funnel is being rotated with con-
stant angular velocity o. An object is placed on the inner

Fig. 1.22 Fig. 1.24

wall of the funnel. The object can freely move along the
generatrix of the cone, but during the motion of the
fpnx}el the body is in a state of equilibrium. Is this equi-
librium stable or unstable?

l..22. A vessel filled with water is moving horizontally
with constant acceleration w. What shape will the surface
of the liquid have?

15



1.23. A liquid has been poured into a cylindrical vessel,
‘What shape will the surface of the liquid have if the
vessel is rotated uniformly about its axis with an angular
velocity w?

1.24. A piece of cork has been attached to the bottom
of a cylindical vessel that has been filled with water and
is rotating about the vertical axis with a constant angu-
lar velocity . At some moment the cork gets free and
comes to the surface. What is the trajectory along which
the cork moves to the surface: does it approach the wall
or the axis or does it move vertically upward?

1.25. A force acting on a material particle of mass m
first grows to a maximum value Fp, and then decreases to

F

0l |
| tm |

Fig. 1.25

zero. The force varies with time according to a linear
law, and the total time of motion is t;,. What will be the
velocity of the particle by the end of this time interval if
the initial velocity is zero?

1.26. Along which of the two trajectories, the horizon-
tal line ac’b or the broken line consisting of two straight

o

! b
h
) X

Fig. 1.26 Fig. 1.27

S

segments (ac and ¢b), will the work performed by a force
in displacing an object be greater if the friction is the
same for all three straight segments?

16
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1.27. An object of mass m is sliding down a hill_ of ar-
pitrary shape and, after Lraveling a certain horlzoptal
path, stops because of friction. The friction cogfﬁment
may be different for different segments of the entire path
but it is independent of the velocity and direction of
motion. Find the work that a force must perform to re-
turn the object to its initial position along the same
ath.

I1),28. The dependence of the polential energy of an
object on its position is given by the equation W = az?®

0 X
Fig. 1.28 Fig. 1.29

(a parabola). What is the law by which the force acting
on the object varies?

1.29. An object whose density is p,y, falls from a certain
height into a liquid whose density is priq. In the figure
the potential energy W of the object is plotted along the
vertical axis and the position of the object (its altitude)
is plotted along the horizontal axis. The potential energy
of the object at the level of the liquid is taken zero and
the positive direction of the vertical axis (the W axis) is
the one pointing upward from the liquid’s surface. De-
termine which of the five straight lines, I-5, corresponds
to an object with the highest density and which to an
object with the lowest density. Is there a straight line
among these five for which po, = (1/2) pjiq? The arrows
on the straight lines point in the direction of motion of
the object.

2—-01569 17



1.30. The dependence of (he potential energy W of the
interaction between two objects on the distance r sepa-
raling them is shown in the figure. What will be the
distances between the objects that correspond lo equilib-
rium positions? Al whal distance will the equilibrium
be stable? (Answer the same question for unstable equi-
librium.) What segments of the curve correspond to a re-
pulsive force and what segments, to an attractive force?
1.31. A load of mass m, is hanging from a string. A bul-
let flying horizontally hits the load. Three cases are pos-
sible here, namely, (1) the bullet pierces the load and,

77777
w
4
&
1 5/}\5
IR -
2 m
Fig. 1.30 Fig. 1.31

retaining a fraction of its velocity, continues its flight,
(2) the bullet gets stuck in the load, and (3) the bullet
recoils from the load. In which of these three cases will
the load be deflected by an angle o with the greatest
magnitude and in which will it be deflected by an angle
with the smallest magnitude?

1.32. Two spheres of equal mass collide, with the colli-
sion being absolutely elastic but not central. Prove that
in this case the angle between the velocities after collision
must be 90°.

1.33. A sphere of mass m, impinges with a velocity v,
on a sphere of mass m, that is at rest, with m, > m,. The
collision is absolutely elastic but not central. By what
maximal angle 6 will the impinging sphere be deflected?
1.34. Two spheres of equal mass are moving at right
angles with velocities that are equal in magnitude. At
the moment of collision the velocity vector of sphere I is

18 N\



directed along the straight line connecting the centers of
the spheres. The collision is absolutely elastic. Plot the
velocity vectors before and after collision in different
coordinate systems: (1) in the laboratory system (in this
system the velocilies of the spheres are those specified
above), (2) in the coordinate system connected with the
center of mass of the two spheres, and (3) and (4) in the
coordinate systems linked to each of the spheres.

1.35. The centers of the spheres 7, 2, and 3 lie on a
single straight line. Sphere 7 is moving with an (initial)
velocity v, directed along this line and hits sphere 2.

7
- My
7N Ty } .
S,
><
( \ - Ej m
K UFO O
my my my mg
Fig. 1.34 Fig. 1.35 Fig. 1.37

Sphere 2, acquiring after collision a velocity v,, hils
sphere 3. Both collisions are absolutely elastic. What must
be the mass of sphere 2 for the sphere 3 to acquire max-
imum velocity (the masses m; and m4 of spheres 7 and
3 are known)?

1.36. A sphere of mass m; moving with a velocity v,
hits a sphere of mass m, that is at rest. The collision is
absolutely elastic and central. The velocities of the
spheres after collision are u, and u,, respectively. What
are the mass ratios for the following values of velocities:
uy =0, u;, <0, and u, > 0?

1.37. A device often used to illustrate the laws of uni-
formly accelerated motion is the Atwood machine. The
machine consists of two loads of mass m, and m, at-
tached to the ends of a limp but inextensible string. The

g 19



string runs over a pulley. The acceleration with which the
loads move is

my—mg
my—+my

= )

whereas the angular acceleration of the pulley is ignored,
Is the last assumption true for exact calculations?

1.38. Strings are wound around a shaft and a sheave of
equal mass, and a load is attached to the end of each
string (the loads have equal mass). Which of the two loads

Shaft

Oqucr

Fig. 1.38 Fig. 1.41

will descend with a greater acceleration and which of the
rotating objects, the shaft or the sheave, has a greater an-
gular acceleration?

1.39. A vacuum cleaner standing on the floor turns
through a small angle when switched on and then stops.
Why does this happen?

1.40. A number of types of helicopters, among which
are the Soviet-made “Mi” helicopters and the Westland
Whirlwinds designed for use by Queen Elizabeth II,
utilize one main rotor and a small vertical tail rotor.
What is the function of this second rotor?

1.41. A rod whose lower end is sliding along the hori-
zontal plane starts to topple from the vertical position.
What will be the velocity of the upper end when this
end hits the ground?

1.42. A thin rod of length 2R and mass m is standing
(vertically) on a perfectly smooth floor. The state of equi-
librium in which the rod is at rest is unstable, and the rod
falls. Find the trajectories that the various points of the

20 \



rod describe and the velocity with which the upper end
of the rod hits the floor.

1.43. A homogeneous rod AB is lying on a perfectly
smooth floor. A bullet hits the rod and gets stuck in it.
The direction of the bullet’s initial velocity v, is perpen-
dicular to the rod, and the point where the bullet hits
the rod lies at a distance z from the middle of the rod.
The mass of the bullet is m and the mass of the rod is M.

Fig. 1.43 Fig. 1.44

Will a velocity directed in opposition to v, be imparted
to end A at the first moment after the collision?

1.44. The axis AB of a gyroscope is mounted in a frame
that can rotate about the axis CD. This frame is mount-
ed, via vertical supports CC’ and DD’, on a horizon-
tal platform which, in turn, can rotate about the axis
EF. At first the platform is at rest and the gyroscope is
rotating in the direction designated by arrow 7. Then
the platform begins to rotate in the direction designated
by arrow 2. How will the gyroscope’s axis change its
position in space?

1.45. A top is spinning in the direction designated by the
arrow in the figure. In what direction does the preces-
sion of the top occur?

1.46. A shaft whose diameter is d and length is / is ro-
tating without friction in bearings with an angular veloc-
ity ,. A sleeve of height 2 and outer diameter D is
fitted on the shaft (the materials of the sleeve and the
shaft are the same). At first the sleeve is not connected

21



with the shaft and is at rest. Then at some moment the
sleeve is clamped to the shaft. What will be the common
angular velocity of the shaft plus the sleeve?

h

3 [o

Fig. 1.45 Fig. 1.46

1.47. A disk and a sphere roll off two inclined planes of
the same altitude and length. Which of the two objects
will get to the bottom of the respective plane first? How
does the result depend on the masses and diameters of
the disk and the sphere?

1.48. A spacecraft is circling the earth E along an ellip-
tical orbit. How must the velocity of the spacecraft at

- N
/
/
’/
‘ P
\
\
\
\\\ L //
Fig. 1.48

perigee P and apogee A he changed so that the spacecraft
follow a circular orbit?

1.49. Several artificial salellites of the same mass are
circling the earth along circular orbits of different radii.
How do the kinetic, potential, and total energies and
angular momenta of the satellites depend on the radii of
the orbits?

1.50. Three orbital space stations are circling the earth
along different orbits: one along a circular orbit and the

22
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other two along elliptical orbits whose l.najor axes are
equal to the diameter of the circular Ol'blt’. The masses
of the stations are the same. Will the energies and angu-
lar momenta of the stations coincide or will they be
different? .

1.51. A spacecraft is circling the earth along a circular
orbit and retains its orientation with respect to thg eartl}.
Is zero gravity inside the spacecraft absolute in this
case?

1.52. A comet flies into the solar system from remote
outer space. The trajectory of the comel is a branch of

(o1,

ii _LA
1 L

Fig. 1.51 Fig. 1.54

a hyperbola. Can the comet become a satellite of the sun
S if the interaction of the comet with the planets of the
solar system is ignored?

1.53. What shape will a round disk have if viewed from
a system of coordinates with respect to which the disk is
moving with a certain velocity directed along the diame-
ter of the disk?

1.54. An isosceles right triangle is moving with respect
to a system of coordinates with a velocity v directed
along the hypotenuse. When viewed from this system, the
triangle appears to be an equilateral triangle. Find the
velocity with which the triangle is moving with respect
to this system.

1.55. The various relationships that exist between time
intervals, coordinates, and velocities in the special theory

23



of relativity are conveniently illustrated via a system
of coordinates in which on the axes we lay off either
distance and time multiplied by the speed of light or
time and distance divided by the speed of light. Curves
that represent motion in such systems are known as world
lines. Various world lines are shown in the figure in the
z/c vs. t coordinates. What does each line represent? Is
there a line that contradicts the main principles of rela-
tivity theory?

1.56. A world line is directed at an angle 0 to the z/c
axis (see Problem 1.55). What is the ratio of the kinetic
energy calculated via the formula of relativity theory to
the value calculated via the formula of classical mech-
anics? Take the specific case of 8 = 60° as an example.
1.57. Two systems are moving with respect to each
other with a certain velocity. The motion of one system

t t 1 t
|
|
8 e/ \I
3}
x/c 0 x/c
(a) (b)
0 X/C
t t t
45°
0 x/c 0 x/c 0 x/C
(c) (d) (e)

Fig. 1.55 Fig. 1.57

in terms of the coordinates z/c and t of the other system
is represented by a world line directed at an angle 0 to
the z/c axis. After a time interval T reckoned from the
origin of coordinates has elapsed, one system sends a sig-
nal to the other. After what time will the second system
receive the signal?

1.58. Three systems, A, B and C, are moving with res-
pect to each other in such a manner that with respect to
system B the velocities of A and C coincide in magnitude
and are directed toward B (Figure (a)). When system 4
comes alongside system B (Figure (b)), the clocks in the

24



two systems are synchronized. At this moment system A
begins emitting signals directed at B and separated by
equal time intervals T,. This continues until 4 comes
alongside C (Figure (c)), with N signals being set over

(a) ——)

-0

8

o

B

o
O
A

(b)
i
o

A <O—>
—— C

()

QO

(@)
Fig. 1.58

the entire interval between the encounters. At this mo-
ment the clock in C is synchronized with the clock in 4
and system C starts Lo send signals directed at B thal are
separated by the same time intervals 7,. Find the differ-
ence in readings of the clock in B and C when these two
systems come alongside (Figure (d)).

2. Molecular Physics and Thermodynamics

2.1. Two balloons of the same volume are filled with
gases at the same pressure, one with hydrogen and the
other with helium. Which of thé two has the greater buoy-
ancy (including the weight of the bag) and what is the
ratio of buoyancies?

2.2. Which of the lines in the figure reflects correctly
on the log-log scale the temperature dependence of the
root-mean-square velocity of molecules?

2.3. Why is the trace of the silver molecules in the
Stern experiment for measuring the velocities of mole-
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cules sharp in the case of fixed cylinders (Figure (a)) and
blurred in the case of rotating cylinders (Figure (b))?

logv] A

(b)
Fig. 2.2 Fig. 2.3

2.4. Usually, in depicting the results of the Stern exper-
iment, one registers the positions 7 and 2 of the traces of
silver for, respectively, fixed and rotating cylinders
(Figure (a)). However, a student depicted the traces in a
manner shown in Figure (b). The instructor remarked that
such a position of traces contradicts the experimental re-
sults, and yet the student was able to defend his position.
Under what condition can such an experimental situation
occur? What are the chances of encountering it in actual
experiments?

2.5. The functions F (v) = dN/dvand f (v) = (1/N,) dN/dv,
with N the number of molecules having velocity v
and N, the total number of molecules in a given volume,
are laid off on the vertical axes in Figures (a) and (b),
respectively. What is the physical meaning of each
hatched segment in these figures?

2.6. All the ordinates of curve 2 are Lwice the corre-
sponding ordinates of curve /. What is the difierence be-
tween the velocity distribution functions represented by
these curves?

2.7. A segment from velocity v, to velocity v; on the
graph representing the velocity distribution function is
isolated (see Figure (b) accompanying Problem 2.5). How
can we on the basis of this graph delermine the energy of
all the molecules whose velocities lie within the specified
range and Lhe average energy of these molecules?
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2.8. The velocity distribution for molecules can be
represented as a function of the ratio of the given velocity
1

2 N

(a)

\ 1(v)

(b) |
Fig. 2.4

to the most probable one. It is then expedient to lay off
on the vertical axis the ratio of the value of the functlion
for the given velocity to the value of the function for the

F(v)

Fig. 2.6

most pro})ablg velocity. Will the distribution curve con-
structed in this manner be valid for different gases, differ-
ent number of molecules, and different temperatures or
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will it be necessary to reconstruct the curve anew for
each case?

2.9. The Maxwellian distribution can be represented not
only by a function of molecule velocities but also by a
function of the energies of the molecules. This latter
function gives the number of molecules whose energies
lie within the interval from w to w 4 dw, or

AN = Nof (w) dw. (2.9.1)

Find the expression for this function and see whether it re-
fers only to one gas or is valid for any gas.

2.10. Let us assume that, contrary to the real (Maxwel-
lian) distribution of molecule velocities, all the molecules
at a certain level, say at sea level, have the same velocity
equal to the root-mean-square velocity at a given temper-
ature. Let us also assume that, in accordance with the
ideal gas model, there are no collisions between the mole-
cules. How would the kinetic energy of molecules vary
with altitude under such conditions? Up to what altitude
would an atmosphere consisting of nitrogen and oxygen
extend?

2.11. Here are two explanations of the buoyancy of a
balloon filled with a light gas. According to the first, the
buoyancy is simply the Archimedes’ force equal to the
weight of the air that would occupy the volume of the
balloon (filled with the gas), while according to the sec-
ond, the buoyancy is the difference between the baro-
metric pressures acting on the upper and lower sections of
the balloon. Do these explanations contradict each other?
2.12. The average displacement of a Brownian particle
in time ¢ is (I). What is the average displacement () of
the same particle in time 2¢?

2.13. If the mean free path of a molecule in a gas is
(1), what is the mean free path of the molecule along an
arbitrary coordinate axis?

2.14. Because of the chaotic motion of molecules in a gas
the free paths of molecules have different values. If on
the vertical axis we lay off the logarithm of the number of
molecules whose free paths exceed a certain value z and
on the horizontal axis the value of z, the graph repre-
senting the dependence of these two quantities is a
straight line with a negative slope,

log N = log Ny — ax.
28
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How can one find the free path of molecules using such a
graph?

logN
Log Ny

Fig. 2.12 . Fig. 2.14

2.15. A vessel is divided by a porous partition into two
parts, I and 2, of equal volume. After the air was pumped
out of the vessel, part I was filled with hydrogen and
part Z with nitrogen. The initial pressures of the gases
are the same. Draw a rough sketch of the graph of how
the pressures of the gases in the vessel change with the
passage of time.

2.16. The temperature of a gas in a vessel changes de-
pending on whether the vessel is open or closed, and so

logD

Fig. 2.15

co Ny

»10§T

Fig. 2.16
Fig. 2.17

does the diffusion coefficient. The temperature dependence
of the diffusion coefficient D for both cases is shown in the
figure on the log-log scale. Which line corresponds to the
case of an open vessel and which to the case of a closed
vessel? The effective cross sections of the molecules are
assumed to be constant.

29



2.147. A vessel is divided by a solid partition into two
parts of equal volume. One part is filled with nitrogen
and the other with carbon monoxide. [t may be assumed
that the cross-sectional areas of the molecules of the two
gases are Lhe same. The relative molecular masses of
both gases are also the same (equal to 28). Finally, the
pressures in both parts are thc same. After the partition is
lifted, the gases begin to diffuse into each other. How
does the amount of each gas that has transferred to the
part occupied by the other gas depend on the initial
pressures of the gases?

2.18. A gas is inclosed in a vessel and has a pressure
at which the mean free path of the molecules exceeds con-

T

Fig. 2.18 Fig. 2.19

siderably the size of the vessel. The collisions that the
molecules have with the walls of the vessel may be consid-
ered elastic. The vessel is placed in a vacuum and has a
small orifice through which the gas molecules escape into
the vacuum. Is the average energy of the molecules leav-
ing the vessel the same as that of the molecules remain-
ing in the vessel? Is the velocity distribution for the
molecules in both groups the same? The gas is assumed to
be ideal, so that no Joule-Thomson effect is present.
2.19. A heat flux passes through a gas from a heated
plate with a temperature T, to a cold plate with a tem-
perature 7T,. The linear dimensions of the plates are
large compared to the distance between them. Is the
temperature gradient the same along the entire heat
flux? Why when measuring the thermal conductivity
coefficient must we place the plates horizontally, with
the plate with the higher temperature placed above the
one with the lower temperature?
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2.20. Liquid nitrogen (¢ == —196 °C) is inside a Dewar
vessel. The air surrounding the vessel has a temperalure
t = 20 °C. The pressure of the residual gas between the
walls of the vessel is about 10~ Pa (roughly 10-* mm Hg).
The mean free path of the “molecules” of air at atmospher-
ic pressure is about 10~7 ;n. What is the temperature of
the air between the walls of the vessel?

2.21. Steady-state heat transfer through a gas occurs
between two parallel walls. The experiment is conduct-

L ———] |+20°C
-196°¢C — "

Fig. 2.20 Fig. 2.2

ed in such conditions that the only process by which
the heat is transferred is pure thermal conduction. The
dependence of the thermal conductivity coefficient A is
measured as a function of the gas pressure p, with the
experiment conducted twice, for two different distances
between the walls. The results are shown in the figure.
What curve corresponds to the greater distance between
the walls?

2.22. Figures (a), (b) and (c) depict three cyclic processes
in the pV-, VT-, and pT-coordinates. The ourvilinear

%
N
g

(a) (b) (c)
Fig. 2.22

sections in Figure (a) are isotherms. Depict the same pro-
cesses in the pT- and VT-coordinates (for process (a)),
the pV- and pT-coordinates (for process (b)), and the
PV- and VT-coordinates (for process (c)).
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2.23. A gas is inside a cylinder closed by a piston. The
piston is held from above by a spring whose elastic prop-
erties obey Hooke's law. Produce a rough sketch, in the
pV-coordinates, of the curve that represents the change
in state of the gas upon heating and determine the work

il

Fig. 2.23 Fig. 2.24

that is done in the process if the volume of the gas varies
from V, to V, and the pressure varies from p, to p,.
2.24. The figure demonstrates the adiabatic curves for
two gases, helium and carbon dioxide. Which curve cor-
responds to which gas?

2.25. A gas expands from an initial state characterized
by a pressure p, and a volume V; in two ways, isothermi-
cally and adiabatically, to the same volume V,. In
which of the two processes is the final pressure higher and
in which is the work greater?

2.26. The amount of heat supplied to an ideal gas is laid
off on the horizontal axis and the amount of work per-
formed by the gas is laid off on the vertical axis. One of
the straight lines in the figure is an isotherm and the
other two are isobars of two gases. The initial states of
hoth gases (pressure, temperature, volume) are the same,
and the scales on the two axes coincide. Which straight
line corresponds to which process? How many degrees of
freedom does each gas have? (Vibrational degrees of free-
dom are not to be taken into account.) The graphs of what
processes coincide with the coordinate axes?

2.27. The straight lines in the figure depict the varia-
tions in temperature as a function of the amount of heat
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supplied in different processes involving the change of
state of a monatomic and a diatomic gas. Which processes
correspond to these straight lines? The graphs of what
processes coincide with the coordinate axes? The initial

A 3 AT !

Fig. 2.26 Fig. 2.27

states (temperature, volume, pressure) of the two gases
are the same.

2.28. One of the straight lines in the figure depicts the
dependence of the work done on the temperature varia-
tions for an isobaric process. The other two are the adiabat-
ic curves for argon and nitrogen. Which straight line

T

A

0 |aTl
Fig. 2.28 Fig. 2.29

corresponds to which process? How should one depict an
isotherm and an isochor in these coordinates? Bear in
mind that on the horizontal axis we lay off the difference
between the higher and the lower temperature.

2.29. For temperatures close to room temperature and
somewhat higher, the molar heat capacity of hydrogen
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agrees, with good accuracy, with the results predicted by
the classical theory of heat capacity for ideal gases, a
theory that allows for three translational and two rota-
tional degrees of freedom for diatomic gases. However, al
low temperaturves the heat capacity of hydrogen drops
and at about 40 K becomes the same as that of a monatom-
ic gas. What is Lhe explanation for this? Why such
behavior is not observed in other diatomic gases?

2.30. When diatomic gases are heated, their heat capac-
ity exhibits a peak in the high-temperature region. Sim-
ilar behavior is observed in inultiatomic gases. What
is the explanation for this?

2.31. Draw a rough sketch for the compressibility of an
ideal gas as a function of pressure for two cases, one when
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the gas is compressed isothermically and the other when
the gas is compressed adiabatically.

2.32. A gas is transferred from a state 7 to a state 2 by
two processes: (a) first by an isochor and then by an iso-
bar, and (b) first by an isobar and then by an isochor.
Will the work done in both cases be the same, will the
amount of heat required in the processes be the same,
and will the increment of entropy in the processes be the
same?
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2.33. Draw the Carnot cycle for a monatomic gas on
the log-log scale using the pT- and VT-coordinates.
2.34. A gas is transferred from an initial state 0 to
other states /, 2, 3, and 4 via different isoprocesses.
Which curve representing the dependence of entropy on
temperature corresponds to which process?

2.35. Draw the Carnot cycle in the ST-coordinates.
2.36. Two objects with initial temperatures T, and T,
(with 7y > T,) are brought into contact. The objectsare
isolated from their surroundings, and the masses and heat.
capacities of the two objects coincide. HTow does the total
entropy of these objects change as the temperatures be-
come equal?

2.37. Suppose that the entropy grows linearly with
temperature in a process. How does the heat capacity
vary with temperature?

2.38. A gas is transferred from a state 7 to a state 2 in
two ways: (a) directly by an isobar, and (2) first by Lhe

p p
1 2 - -

v

Fig. 2.38 Fig. 2.40

isochor 1-3, then by the isobar 3-4, and, finally, by the
isochor 4-2. Show, by direct calculation, that the entropy
increment in both cases is the same.

2.39. A heat engine operates according to a cycle that
consists of two isochors and two isobars. Prove that the
entropy of the heater-gas-cooler system increases as the
engine operates. How does the entropy of the gas change
in the process? The heat capacities of the heater and cool-
er are assumed to be infinite.

2.40. According to the van der Waals equation, which
is a third-degree equation in the volume, the theoretical
1sotherm of a real gas may have either one or three in-
tersections with a horizontal line, the intersections cor-
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responding to either one or three real roots of the equa-
tion. With three roots it may so happen that two are equal
(maxima and minima on the isotherm) or even all three
are equal (the critical point). However, on an isotherm
built for a sufficiently low temperature there is a section
lying below the horizontal axis, and a horizontal line
in this case intersecls the section only at two points (two
roots in V). Where in this case is the compulsory third
root?

2.41. The section I-3 on the theorelical isotherm of a
real gas (the van der Waals isothermn) is assumed to be
unrealistic because of its absolute instability. What is the
reason for this instability?

2.42. Changes in the state of a real gas or liquid that
are realized under ordinary conditions at a constant

Pz
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Fig. 2.41 Fig. 2.42

temperature are represented by the so-called Andrews
isotherm, which consists of a section (Z-2) representing
the unsaturated vapor, a section (2-4-6) representing the
two-phase state (saturated vapor and liquid), and a sec-
tion (6-7) representing the liquid. This isotherm differs
from the theoretical van der Waals isotherm (7-2-3-4-5-6-
7), which corresponds Lo a one-phase transition of the
entire mass of vapor into liquid. On the van der Waals
isotherm there are sections corresponding to metastable
states (2-3 and 5-6), which can be realized in certain
conditions. What are these stales and what are the con-
ditions for their realization?

2.43. Using the second law of thermodynamics, prove
that the areas of the hatched sections between the theoret-
ical and experimental isotherms of a real gas must be
equal.
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2.44. When a liquid evaporates, the heat supplied to it
is used partially to do work in overcoming the forces of
cohesion between the molecules (the internal heat of va-
porization) and partially to do work against the forces
caused by external pressure (the external heat of vapor-
ization). How to determine the external heat of vapor-
ization from the graph representing the experimental
isotherm of a real gas?

2.45. Gas cylinders and pipes intended for operation
under high pressures are usually tested not by pumping

p J 0 0
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Fig. 2.43 Fig. 2.49

air or a gas into them but by filling them with a liquid,
water or oil, and raising the pressure up to the test value.
This is done in accordance with safety regulations. What
is the explanation for this?

2.46. To demonstrate the transition to the critical state,
a liquid (usually ethyl ether) is placed inside a small
sealed thick-walled glass tube. The tube is then sealed off
(Figure (a)) and slowly heated. It is found that in the
process of heating the boundary between the liquid and
the vapor above the liquid rises and the meniscus be-
comes flatter (Figure (b)). Itisextremely difficult to observe
the transition through the critical temperature because of
intense convective fluxes, but the result is seen because at
this temperature the meniscus disappears completely
(Figure (c)). Upon slowly cooling the tube it is found that
at the same temperature the entire volume becomes cloudy,
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so that light cannot pass through the tube (Figure
(d)). If the temperature is lowered still further, the
volume becomes transparent and there appears a menis-
cus, which separates the two phases. Explain the reasons
for the observed phenomena.

2.47. How does the temperature of a liquid change un-
der adiabatic evaporation?

2.48. The bending of the surface of a liquid creates excess
pressure (known as the Laplace pressure). Because of this
the pressure inside a soap bubble is somewhat higher than
the atmospheric pressure. In a drop, too, there is excess
pressure. Suppose we have a drop of liquid and a soap
bubble of the same liquid and the same diameter. Where
is.l the pressure greater: inside the drop or inside the bub-
ble?

2.49. Two soap bubbles of different diameters arve
blown oul using a T-shaped pipe (see the figure). Will
the diameters of Lhe bubbles remain unchanged?

2.50. Three drops of different diameters are in the atmo-
sphere of the vapor of the liquid from which the drops are
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Fig. 2.50 Fig. 2.51

formed. The pressure of the vapor is such that the drop
with the medium diameter (Figure (b)) is in equilibrium
with the vapor. Is this equilibrium stable? How will the
drops of the smaller (Figure (c)) and the larger (Fig-
ure (a)) diameters behave?

2.51. Two drops are placed belween two parallel glass
plates, a drop of water (Figure (a)) and a drop of mercury
(Figure (b)). What forces act on the plates in each case?
2.52. Inside two conical pipes there is a drop of water
(Figure (a)) and a drop of mercury (Figure (b)). Where
does each drop Lend to move?

2.53. Which of the curves shown in the figure depicts
correctly the temperature dependence of surface tension?
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Curve 1 falls off to zero at the boiling point of the liquid,
curve 2 falls off to zero at the critical temperature, curve 3
tends to zero asymptotically, and curve 4 shows that sur-
face tension is temperature independent.

Thoil Ter T
Fig. 2.52 Fig. 2.53

2.54. A capillary tube is placed vertically in water. The
diameter of the tube is such that surface tension “lifts”
the liquid to an altitude h,. But the height of the tube
above the liquid, &, is less than h,.
How in this case will the column of ——
liquid in the tube behave? ‘lh
‘fh

2.55. A viscous liquid is flowing due
to a pressure head Ap along a pipe of
length ! and diameter D. Will the FJ}-—=—=—-—]
volume flow remain the same if instead
of this pipe we use four parallel pipes |- - - - - - -
of the same length but with the

diameter of each pipe being equal Fig. 2.54
to D/2?

2.56. A viscous liquid is flowing along a horizontal pipe
of diameter D = 2R. At some point in time a particle of
rust or boiler scale gets detached from the upper part of
the pipe and falls downward. Assuming that this particle
acquires a constant fall velocity v, practically at once
(at this velocity the force of gravity, Archimedes’ force,
and the drag of the liquid balance each other), find the
trajectory of the particle and the distance the particle
travels in the horizontal direction due to the flow of the
liquid. The maximal velocity of the liquid (along the
pipe’s axis) is Uyp.

2.57. When ice with a temperature below 0 °C is mixed
with water with a temperature above 0 °C, there are four
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possibilities: the ice melts and the final temperature is
above 0 °C, the water freezes and the final temperature is
below 0 °C, part of the ice melts and the temperature of
the mixture becomes 0 °C, and part of the water freezes

1 t°c tc t°c

8o 80 gol 80|
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Fig. 2.57

and the temperature of the mixture becomes 0 °C. On
the horizontal axis we lay off the amount of heat that the
water gives off in cooling and freezing (the upper straight
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lines) and the amount of heat that the ice absorbs in
heating and melting (the lower straight lines). The scale
along the horizontal axis is arbitrary, that is, the scale
value is not specified. The temperature (in degrees Celsi-
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us) is laid off on the vertical axis. Find the final result of
mixing whose beginning is shown in each figure. When
either all the water freezes or all the ice melts, determine
the final temperature.

2.58. A phase diagram represents the relationship be-
tween the temperature and pressure at the boundary that
separates two phases. To which phases do the regions 7, 2,
and 3 correspond?

2.59. The phase diagram ol water is shown schematical-
ly in the figure. Using this diagram, explain this partic-
ular dependence of the melting point of ice on the exter-
nal pressure.

2.60. The compressibility of a liquid does not remain
constant under pressure variations. How, knowing the
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dependence of compressibility on pressure within a cer-
tain pressure interval from p, to p,, can we find the ratio of
volumes at these values of pressure?

2.64. As is known, the density of water at first grows
when water is heated from 0 °C but then, at 4 °C, begins
to drop, as shown in the figure. Does the explanation of
this lie in the fact that in introducing the metric system
of units the weight of a definite volume of water at 4°C
was taken as the unit of weight (subsequently this was
taken as a unit of mass)?

2.62. The wall of a house consists of two layers with
different thermal conductivity coefficients. The tempera-
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ture of the outer wall is 7', and that of the inner wall is
T,. Temperature variations inside the wall are shown in
the figure. What layer, the inner or the outer, has a high-
er thermal conductivity coefficient?

2.63. A rod with a cross-sectional area S and initial
length [ is elongated by Al due to a tensile stress. The
modulus of longitudinal elasticity of the material of the
rod, or Young’s modulus, is £. Find the bulk energy den-
sity for the deformation of Lhe rod.

2.64. Two bars I and 2 of the same cross-sectional area
and the same length but made of different materials are

J 7
L ‘1,51. 1 [ 2
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clamped between two undeformable walls. The materials
of the bars differ in mechanical and thermal properties.
What must be the relationship between Young's moduli
and the linear coefficients of thermal expansion so that
heating the bars does not change the position of the
boundary between them? Under what conditions does the
deformability of the walls have no effect on the result?

3. Electrostatics

3.1. Three charges are placed at the vertices of an iso-
sceles right triangle, with charges 4-Q and —Q at the acute
angles and a charge --2Q at the right angle. Determine
which of the numbered vectors coincides in direction with
the field produced by these charges at a point that is the
middle of the hypotenuse.

3.2. Two point-like charges a and b whose strengths are
equal in absolute value are positioned at a certain distance
from each other. Assuming the field strength is positive
in the direction coinciding with the positive direction of
the r axis, determine the signs of the charges for each
distribution of the field strength between the charges
shown in Figures (a), (b), (c), and (d).
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3.3. Two point-like charges are positioned at points a
and b. The field strength to the right of the charge Q, on
the line that passes through the two charges varies accord-
ing to a law that is represented schematically in the
figure accompanying the problem (without employing a
definite scale). The field strength is assumed to be posi-
tive if its direction coincides with the positive direction
on the z axis. The distance between the charges is /.
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Find the signs of the charges and, bearing in mind that
the field strength at a point z, is zero, the ratio of the ab-
solute values of charges Q, and Q, and the coordinate r,
of the point where the field strength is maximal.

3.4. Two mutually perpendicular straight conductors
carry evenly distributed charges with linear densities T,
and 1,. Among the lines of force representing the field
generated by these conductors there is a straight line pass-
Ing through the point of intersection of the conductors.
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At what angle o with respect to the conductor with the
charge density 1, does this line pass?*

* The statement of the problem is not quite proper. The electro-
static interaction between the charges makes it impossible
to maintain an even distribution of cgarge on the conductors.
The same situation is present in other problems (e.g. see
Problems 3.5 and 3.6). The difficulty can be overcome by
assuming that each conductor consisls of a large number of
sufficiently small sections isolated from each other.

3.5. An infinitely long straight conductor carrying a
charge with a lincar density +7T and a point charge
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Fig. 3.4 Fig. 3.5

—Q are at a certain distanice from each other. In which
of the three regions (7, I, or I11) are there points that (a)
lie on the line passing through the point charge per-
pendicular to the conductor and (b) at which the field
strength is zero?

3.6. 'T'wo mutually perpendicular infinitely long straight
conductors carrying uniformly distributed charges
of linear densities 1, and 7, are positioned at a distance
a from each other. How docs the interaction between the
conductors depend on a?

3.7. Near an infinitely large flat plate with a surface
charge densily o on each side, the field strength is**

’ g

€. '

while the field produced by a point charge at a distance
r from the charge is

T bmeger? °

Prove that for a uniformly charged disk with a surface
charge density o (on each side), the electric field strength
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on the axis of the disk is the same as for an infinitely
large flat plate if the distances are small in comparison
with the disk’s radius R, and is the same as for a point
charge if the distances are large.

** Usually the value of the field strength given in textbooks is
half the one given here, since there it is assumed that the
charge is on a geometric plane.

3.8. At a certain distance r from an infinitely long
straight conductor with a uniformly distributed linear
charge T there is a dipole with an clectric moment pg,
directed along the line of force representing the field gen-
erated by the conductor at Lhe point where the dipole is

T k9

Fig. 3.6 Fig. 3.8

located. Assuming the arm of the dipole is very small
compared to the distance r, find Lhe force with which the
field acts on the dipole.

3.9. The figure shows the schematic of an absolute elec-
trometer. The potential difference that is to be mea-
sured is applied between the plates and 2, with the upper
plate connected to one arm of a balance beam.* The pan
connected to the other arm is loaded with weights until
balance is achieved, that is, when the upper plate begins
to move upward. In this way the force acting between the
charged plates is measured, and this enables one to de-
termine the magnitude of the potential difference between
the plates. It the equilibrium in the electrometer stable or
unstable?

* The figure does not show the protecting rings around plates 2
and 2 with the same potentials. Thesc are used to ensure
that the field is as uniform as possible.

3.10. A small thin metal strip lies on the lower plate of
a parallel-plate capacitor positioned horizontally. The

voltage across the capacitor plates is increased gradually
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to a value at which the electric force acting on the strip
becomes greater than the strip’s weight and makes the
strip move toward the upper plate. Does the force acting
on the strip remain constant during the lifting process?

Q.
2

—r——

————
my

| + 1
2 - ng
4L
~7 V/
Fig. 3.9 Fig. 3.10

3.41. Into the region of space between the plates of a
parallel-plate capacitor there flies (a) an electron and (b)
a negatively charged ion with a velocity directed parallel
to the plates. Both the electron and the ion have received
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their initial kinetic energy by passing the same potential
difference U,, and the potental difference across the ca-
pacitor is U. The distance between the plates is d. Which
of the two particles will travel a greater distance before
hitting the positively charged plate if both fly into the
capacitor at a point that is exactly in the middle of the
distance between the plates?

3.12. An electric dipole is positioned between a point-
like charge and a uniformly charged conducting plate. In
which direction will the dipole move?

3.43. A point-like charge Q and a dipole with an elec-
tric moment p,, are separated by a distance that is consid-
erably larger than the arm of the dipole, with the result
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that the dipole may be considered as being point. The
dipole’s axis lies “along the lines of force of the point
charge. Compare the force acting on the dipole in the field
of the point charge with that acling on the point
charge in the field of the dipole.
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3.14. A small uncharged sphere is positioned exactly
in the midpoint between two charges whose absolute val-
ues are the same but whose signs are opposite. Suppose
the sphere is shifted somewhat. Will it remain in the
new position or will it move in some direction?

3.15. A small uncharged metal sphere is suspended by
a long nonconducling string in the region between the

OIOROIS
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vertically positioned plates of a parallel-plate capacitor,
closer to one plate than to the other. How will the sphere
behave?

3.16. Two conducting spheres carry equal charges. The
distance between the spheres cannot be considered large
in comparison with the diameters of the spheres. In
which case will the force of interaction between the
spheres be greater (in absolute value): when they carry like
charges (Figure (a)) or when they carry unlike charges
(Figure (b))?

3.17. A point charge is surrounded by two spherical
layers (Figure (a)), with the electric field strength as a
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function of distance having the form depicted in Fig-
ure (b) (on the log-log scale). In what layer (the inner or the
outer) is the dielectric constant greater and by what
factor?
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3.18. The region of space between the plates of a paral-
lel-plate capacitor is filled with a liquid dielectric with
a dielectric constant g;. A solid dielectric with a dielec-
tric constant &, is immersed in the liquid. The lines of
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Fig. 3.18

force in the liquid have the shape shown in the figure.
Which of the two dielectric constants is greater?
3.19. Various potential distributions between two point
charges are shown in Figures (a)-(d) (the charges are
equal in absolute value). Determine the signs of Lhe
charges for each case.

3.20. Two point charges, Q, and Q,, are positioned
at a certain distance from each other. The curves in the
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figure represent the distribution of the potential along
the straight line connecting the two charges. At which
points (7, 2, and/or 3) is the electric field strength zero?
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What are the signes of the charges Q, and Q, and which
of the two is greater in magnitude?

3.21. Two cqual like charges are positioned at a cor-
tain distance from each other. How do the electric field
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strength and the potential vary along the axis that passes
through the midpoint of the distance between the charges
at right angles to the line connecling the charges?

3.22. A potential difference is applied between a con-
ducting sphere and a conducting plate (“plus” on the sphere
and “minus” on the plate). The dimensions of the plate
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are much larger than the distance between sphere and
plate. A point positive charge is moved from ppintl
to point 2 parallel Lo the plate. Is any work done in the
process? '

3.23. Two parallel-plate capacitors with different dis-
tances between the plates are connected in parallel to a
voltage source. A point positive charge is moved from a
point / that is exactly in the middle between the plates
of a capacitor CI to a point 2 (or a capacitor C2) that lies

Fig. 3.23 Fig. 3.24

at a distance from the negative plate of C2 equal tojhalf
the distance between the plates of CI. Is any work done
in the process?

3.24. The space between the rectangular plates (with
sides a and b) of a parallel-plate capacitor (the distance
between the plates is ) is filled with a solid dielectric
whose dielectric constant is €. The capacitor is charged to
a certain potential difference and disconnected from the
voltage source. After that the dielectric is slowly moved
out of the capacitor, which mcans that the section z not
filled with the dielectric gradually increases in size. How
will the potential difference between the plates and the
surface charge densities on both parts of the capacitor
(with and without the dielectric) change in the process?
3.25. At which of the two points, 7 or 2,of a charged
capacitor with nonparallel plates is the surface charge
density greater?

3.26. The diameter of the outer conductor of a cylindri-
cal capacitor is D,. What should the diameter of the core,
D,, of this capacitor be so that for a given potential differ-
ence between the outer conductor and the core the elec-
tric field strength at the core is minimal?

3.27. Four capacitors, CZ, C2, C3, and C4, are connected
as shown in the figure. A potential difference is applied
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between points 4 and B. What should the relationship
between the capacitances of the capacitors be so that
the potential difference belween points a and b is zero?
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3.28. An electric charge with a constant volume density
p is distributed within a solid sphere of radius R. Deter-
mine and represent graphically the radial distributions
of the electric field strength and the potential inside and
outside the sphere.

3.29. In the region of space between the plates of a par-
allel-plate capacitor there is a uniformly distributed pos-
itive charge with a volume density p. The plates are
connected electrically and their potential is set at zero.
Calculate and draw a sketch of the distributions of the
potential and electric field strength between the plates.
3.30. Two series-connected capacitors of the same size,
one filled with air and the other with a dielectric, are
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Fig. 3.30 Fig. 3.32

connected Lo a voltage source. To which of the capacitors
a higher voltage is applied?

3..31. Two identical air capacitors are connected in se-
ries. How will the charge on and potential difference across
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each capacitor change when the distance between the
plates of one capacitor is increased in the following cases:
when the capacitors are connected to a DC source, and
when the capacitors are first charged and then disconnected
from the DC source?

3.32. Two identical parallel-plate air capacitors are con-
nected in one case in parallel and in the other in series.
In each case the plates of one capacitor are brought closer
together by a distance a and the plates of the other are
moved apart by the same distance a. How will the total
capacitance of each system change as a result of such
manipulations?

3.33. A parallel-plate capacitor is filled with a dielec-
tric up to one-half of the distance between the plates.
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Fig. 3.33 Fig. 3.34

The manner in which the potential between the plates
varies is illustrated in the figure. Which half (7 or 2)
of the space between the plates is filled with the dielectric
and what will be the distribution of the potential after
the dielectric is taken out of the capacitor provided
that (a) the charges on the plates are conserved or (b) the
potential difference across the capacitor is conserved?
3.34. A capacitor is partially filled with a dielectric.
In which of its parts is the electric field strength greater?
What about the electric displacement and the energy
density?

3.35. Two parallel-plate capacitors, one filled with air
and the other with a dielectric, have the same geometric
dimensions, are connected in parallel, and are charged to
a certain potential difference. In which of the two capac-
itors is the electric field strength greater, in which is the
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electric displacement greater, in which is the energy den-
sity greater, and in which is the surface charge density on
the plates greater?

3.36. Three point-like charges are positioned at the ver-
tices of an equilateral triangles. Two are equal in magni-
tude and are like, while the third is opposite in sign.
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What should the magnitude of the third charge be so
that the total interaction energy of the charges is zero?
3.37. The dielectric filling the space between the plates
of a capacitor that has been charged and then disconnect-
ed from the voltage source is removed. How should the
distance between the plates be changed so that the energy
stored in the capacitor remains the same? Explain the
origin of the change in enecrgy.

3.38. A capacitor between whose plates there is a dielec-
tric with a dielectric constant & is connected to a DC
source. How will the energy stored in the capacitor change
if the dielectric is removed? Explain the cause of this
change.

3.39. A parallel-plate capacitor that has been first charged
and then disconnected from the voltage source is sub-
merged in the vertical position into a liquid dielectric.
How does the level of the dielectric between the plates
change in the process?

3.40. A parallel-plate capacitor with vertical plates is
connected to a voltage source and then submerged into a
liquid dielectric. How does the level of the dielectric
between the plates change in the process? Explain the
change of the energy stored by the capacitor.

3.41. A cube has been cut out from a piezoelectric crys-
tal. When the cube was compressed, it exhibited electric
charges on the faces: a positive charge on the upper face
and a negative charge on the lower (Figure (a)). When
the cube was stretched, the charges were found to change
their signs (Figure (b)). What will be the signs of the
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charges on these faces if pressure is applied as shown in
Figure (c)?

3.42. The relationship that exists between the electric
displacement and the electric field strength in a ferroelec-
tric is given by the curve of primary polarization and
a hysteresis loop. Are there any points on the hysteresis
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loop to which we might formally assign a dielectric con-
stant equal Lo zero or to infinity?

3.43. A charged parallel-plate capacitor is moving
with respect to a certain system of coordinates with a ve-
locity v directed parallel to the plates. What is the ratio
of the electric field between the plates in this coordinate
system to the same quantity in the system of coordinales
in which the capacitor is at rest?

4. Dircet Current

4.1. Two conductors, 1-3-5 and 2-4-6, connected points
with equal potentials on the resistors R, and R, so that
no current flows through either of them. Will there he
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currents flowing through them and through the 3-4 sec-
tion if the key K is closed? Will this lead to a change in
the reading of the ammeter?
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4.2. Tlow will the reading of the amieter change if the
key K is closed?

4.3. A voltage U, is applied to a polentiomeler whose
sliding contact is exactly in the middle. A voltmeter V
is connected between the sliding contact and one fixed
end of the potentiometer. It is assumed that the resis-
tance of the voltmeter is not very high if compared with
the resistance of the potentiometer. What voltage will the
voltmeter show: higher than, less than, or equal to U,/2?
4.4. A “black box” is an electric unit with four termi-
nals, 7, 2, 8, and 4, and an unknown internal structure.
The box shown in Figure (a) and (b) possesses the follow-
ing properties: if a constant voltage of 220 V is applied
to terminals 7 and 2, a voltage of 127 V appears across
terminals 3 and 4 (Figure (a)), while if a voltage of 127 V
is applied to terminals 8 and 4, the same voltage of
127 V appears across terminals 7 and 2 (Figure (b)).
What is inside the “black box”? The forinulation of the
problem is quite meaningful if the voltages are measured
by electrostatic voltmeters, which do not consume elec-
tric current. If voltmeters of the magnetoelectric, ther-
mal, or clectromagnetic type are employed, the voltages
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across the “out” terminals of the “black box” may some-
whal differ from the ones indicated in Figures (a) and (b).
4.5. Two potentiometers are connected in series, and
their sliding contacts are connected electrically, too. In
one potentiometer the sliding contact remains fixed at
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the midpoint. How will the reading of the ammeter vary
as the sliding contact of the second potentiometer is
moved from one end of the potentiometer to the other?
4.6. A constant voltage U, is applied to a polentiome-
ter of resistance R connected to an ammeter. A constant

—oU, o—

Fig. 4.6

resistor r is connected to the sliding contact of the poten-
tiometer and the fixed end of the potentiometer (after an
ammeter). How will the reading of the ammeler vary as
the sliding contact is moved from one end of the poten-
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tiometer to the other? The resistance of the ammeter is
assumed to be negligible.

4.7. To measure a small emf (of, say, a galvanic cell or
a thermocouple) the so-called balancing method is em-
ployed. The circuit diagram of this method is shown in
the figure. Here &, is the sought emf, € is the source of
current whose emf is much higher than &,, G is a gal-
vanomeler with the zero in the middle of the scale, 4 is
an ammeter, and R is the resistance box. How should one
operate this circuit so as to ensure an accuracy in measur-
ing €. that is determined by the precision of the measur-
ing devices?

4.8. Two resistors with resistances R, and R, are con-
necled in series, and so are two capacitors with capaci-
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tances C; and C,. The two systems are connected in paral-
lel and an external voltage is applied to the new system
(see the figure accompanying the problem). What must
be the relationship between R,, R,, C,, and C, for the
potential difference between the points @ and b to be
zero?

4.9. All the resistances and emf’s shown in the figure
accompanying the problem are assumed known. How
many values of current can exist for such a circuit? How
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many equations for finding these values must we con-
struct on the basis of Kirchhoff's first law and how many
musl we construct on the basis of Kirchhoff’s second law?
4.10. Twelve conductors are connected in such a way
that they form a cube, and an emf source is connectcd
into an edge of the cube. All the resistances and the emf’s
are known. There are eight junctions (eight vertices of
the cube) and six loops (six faces of the cube) in the cir-
cuit. Construct the equations for determining all the cur-
rents in the circuit.

4.141. A source of electric current with an emf &, and
an inlernal resistance r is connected to an external circuit
with a resistance R. What must be the relationship be-
tween r and R for the power output in the external circuit
to be maximal? What is the efficiency of the current source
in this case, provided that the power output in the
external circuit is assumed to be the useful output?
4.12. In two circuits, each of which contains a DC
source and an external resistance, the maximal currents
are the same, while the maximum power output in the
external resistance of one circuit is twice that in the other.
In what parameters do these circuits differ?

4.13. ADC source is connected to a rheostat. When (he
sliding contact is x distant from either end of the rheo-
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stal (Lthe lenglh of the rheostat is set at unity), the power
outpul in the rheostat is the same in bolh cases. Deler-
mine the internal resistance of the PC source if (he re-
sistance of the theostat is R.

4.14. FHow musl a large number of galvanic cells, each
having the same emf & and the same internal resistance
r, be connected so that in an external circuit whose re-
sistance is R the power output is maximal?
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4.15. Can a circuit be constructed in which the displace-
ment current in the capacitor remains practically con-
stant over a definite time interval?

4.16. A DC source with known emf & is charging a ca-
pacitor C. After the charging process has been completed,
the capacitor is disconnected, via a key K, from the DC
source and is connected to a resistor R, through which
the capacitor discharges. The capacitance of the capacitor
and the resistance of the resistor are selected in such a
way that the charging process takes several minutes, so
that the discharge current can be registered by a measur-
ing device, G. The results of measurements are used to
draw a rough curve on a diagram in which the time of
discharge is laid off on the horizontal axis and the loga-
rithm of the current, on the vertical axis. Determine the
law by which the current varies and the curve represent-
ing the dependence of the logarithm of the current on
the time of discharge. How can the curve help in deter-
mining the parameters of the discharge circuit, R and C?
4.17. A capacitor of capacitance C is charged to a po-
tential difference U, and is then discharged through a re-
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sistance R. The discharge current gradually decreases,
with a straight line 7 corresponding to this process (see
the figure accompanying the problem, where time is laid
off on the horizontal axis and the logarithm of the cur-
rent, on the vertical axis). Then one of the three para-
meters, U,, R, or C, is changed in such a manner that the
In I vs. t dependence is represented by the straight line 2.
Which of the three parameters was changed and in what
direction?

4.18. A charged capacitor is discharged through a re-
sistor two times. The time dependence of the logarithm
of the discharge current obtained in the two experiments
is represented by the two straight lines, / and 2, in the
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figure accompanying the problem. The experimental con-
ditions differed only in one of the three parameters: the
initial voltage of the capacitor U, the capacitance C, or
the resistance R. Determine the parameter that was var-
ied in these experiments and in which case this para-
meter is greater.

4.19. Prove that when a capacitor of capacitance C that
has been charged to a potential difference U, is discharged
through a resistance R, the amount of heat liberated in
the conductors is equal to the initial energy stored in the
capacitor.

4.20. Prove that when a capacitor is charged through a
resistor R from a DC source with an emf equal to & half
of the energy supplied by the source goes to the capacitor
and half, to heating the resistor.

4.21. A charged capacitor is connected to an uncharged
capacitor with the same capacitance. Determine the
changes in the energies stored by the two capacitors and
explain the origin of these changes from the viewpoint of
energy conservation.

4.22. A conducting disk is rotating with an angular ve-
locity @. Allowing for the fact that clectrons are the cur-

Fig. 4.22 Fig. 4.23 Fig. 4.24

rent carriers in a conductor, determine the potential
difference between the center of the disk and the edge.
4.23. In the Tolman-Stewart experiment, a cylinder is
mounted on a shaft and is rotated very rapidly. The sur-
face of the cylinder is wound with many turns of wire of
length I in a single layer. After the cylinder has been set
spinning at a large angular velocity, it is braked to a
stop as quickly as possible. In the circuit consisting of
the wire and a measuring device, this braking manifests
itself in a pulse of current caused by the potential differ-
ence that appears between the ends of the wire. If the
potential difference is registered by an oscillograph, we
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obtain a curve similar to the one shown in the figure
accompanying the problem, where time is laid off on the
horizontal axis.* How, knowing the initial linear veloc-
ity of the winding, the length of the wire, and the vol-
tage oscillogram, can one determine the electron charge-

to-mass ratio?
* In the Tolman-Stewart experiment, the quantity measured
was not the potential difference but the amount of electricity

passing through the circuit. This was done using a device
called the ballistic galvanometer.

4.24, The section of a conductor between the points a
and b is being heated. Does this lead to a redistribution
of potential along the conductor (the arrow indicates
the direction in which the current is flowing)? Will the
passage of current change the temperature distribution in
the conductor?

4.25. A constant voltage is applied to a metal wire. The
current passing through the wire heats the wire to a cer-
tain temperature. Then half of the wire is cooled by a
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stream of air from a fan. How will the temperature of the
other half of the wire change in the process?

4.26. Two electric bulbs whose rated voltage is 127 V
and whose rated wattages are 25 and 150 W are connect-
ed in series to a DC source of 220 V. Which of the two
bulbs will burn out?

4.27. A conductor and a semiconductor are connected in
parallel. At a certain voltage both ammeters register the
same current. Will this condition remain as such if the
voltage of the DC source is increased?

4.28. A conductor and a semiconductor are connected in
series. The voltage applied to this system is selected in
such a way that the readings of the voltmeters VI and
V2 coincide. Will this condition remain unchanged if the
voltage of the DC source is increased?
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4.29. A thermionic valve, or diode, has a heated fila-
ment and a plate near it. The dependence of the current
flowing between filament and plate on the voltage applied
lo valve (the current-voltage characteristic) is as follows.
First the current grows with voltage, but then goes into a
plateau at a sufficiently high voltage. Why, notwithstand-
ing the fact that the filament may emit the number of
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electrons required for the saturation current to set in,
the latter does not manifest itself at an arbitrarily simall
voltage between the electrodes? In which respect does
curve I differ from curve 2 from the standpoint of the
experimental conditions if the two are obtained using the
same device?

4.30. A cutoff voltage is applied between the cathode and
the anode of a thermionic valve (“minus” at the anode and
“plus” at the cathode). The cathode temperature, how-
ever, is sufficient for thermionic emission to manifest itself.
If the direction of the elcctric field is reversed by applying
between the cathode and the anode a voltage at which
saturation current will flow through the valve, will the
temperalure of the cathode maintained in the cutoff di-
rection of the field remain the samec?
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4.31. Fora current passing through an electrolyte (Fig-
ure (a)), the distribution of potential between the elec-
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trodes is shown in Figure (b). Why, notwithstanding the
fact that the electrodes are flal and the distance belween
them is much smaller than their lincar dimensions, is the
field between the electrodes nonuniform? _
4.32. The distribution of potential between the cathodé
and anode in a glow discharge is shown in the figure accom-
panying the problem (the distance from the cathode is
laid off on the horvizontal axis). Within which regions of
space (see the numbers on the horizontal axis) is there a
positive volume charge, a negative volume charge, and
a volume charge that is practically zero?

4.33. In the plasma of a gas discharge, the concentration
of electrons and that of positive ions are practically the
same. Does this mean that the current densities created
by the motion of electrons and ions are also the same?
Will an ammeter connected in scries with the gas discharge
gap show the sum of the electron and ion currents or
their difference?

4.34. A negalively charged particle is accelerated in its
motion from a cathode C to an anode 4, passes through
an aperture in the latter, and moves toward a Faraday
cylinder I that is at the same potential as the anode
(Figure (a)). For the sake of simplicity it will be as-
sumed that the particle movesfrom A to F with a constant
velecity. Determine the moment of time when a measur-
ing device G in the circuit will register a current (the
time is reckoned from the moment when the particle
leaves the anode) and the form of the current, that is,
whether the current is in the form of a pulse when the
particle leaves the anode (Figure (b)) or whether it is a
pulse when the particle enters the Faraday cylinder (Fig-
ure (c)) or whether there are two pulses (one when the
particle leaves the anode and the other when the particle
enters the Faraday cylinder; see Figure (d)) or whether the
current is steady over the entire motion of the particle
from the anode to the Faraday cylinder (Figure (e)).
4.35. The behavior of the potential energy of an elec-
tron inside and outside a metal is shown for two metals
in Figures (a) and (b). The same figures indicate the limit-
ing kinetic energies Wy of clectrons in the metals (the
Fermi levels) at 7 = 0 K. If the metals are brought into
ccntact, what will be the values of the internal and exter-
nal contact potential differences? In which metal will the
electron concentration be higher?



4.36. The energy distribution function for electrons in a
metal at absolute zero can be written as follows:

1 (W) = CW/3, (4.36.1)
where C is a constant coefficient that is a combination of

universal constants. This function terminates at Wp,
which is the limiting energy, or the Fermi level. Using
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(4.36.1), establish how the limiting energy depends on
electron concentration.

4.37. The dependence of the logarithm of conductivity,
In 0, on T, where T is the temperature, for two semi-
conductors is shown in the figure. In which of the two
semiconductors is the gap (the forbidden band) between
the valence band and the conduction band wider?

4.38. The dependence of the logarithm of conductivity,
In o, on 1/T for two semiconductors is shown schematical-
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ly in the figure. In which respect do these semiconductors
difier?

4.39. The distribution of potential near the boundary
between two semiconductors with different types of con-
duction depends on the direction of the applied external
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voltage. Which distribution corresponds to the blocking
direction and which, to conduction? To what semiconduc-
tors do the left and right branches of the curves in the
figure belong?

4.40. The current-voltage characteristic of a semicon-
ductor diode based on the properties of the p-r junction
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has two branches: the upper right branch and the lower
left branch. Since the right branch corresponds to small
voltages and the left branch to considerably higher vol-
tages (with the currents in the conductive direction being
much higher than the currents in the blocking direction),
the two branches are constructed using different scales.
What is the explanation for the existence of the left
branch and in what manner does the current in the block-
ing direction depend on the temperature of the diode?
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4.41. The phenomenon of secondary electron emission
consists in the following. When electrons bombard a sol-
id surface, the surface emits secondary electrons (and
partially reflects the primary electrons, which impinge
on the surface). Secondary electron emission is character-
ized by the secondary emission coefficient o, which is the

0 _ -
Fig. 4.41

tatio of the secondary electron current to the primary
current. The dependence of the secondary emission coef-
ficient on the primary electron cnergy W, for a certain
dielectric is depicted in the figure. At 6 = 1 the surface
of the dielectric does not change its potential under elec-
tron bombardment, since the number of electrons leav-
ing the surface every second is equal in this case to the
number of electrons bombarding the surface every sec-
ond. The two points ¢ and b on the o vs. W, curve cor-
respond to ¢ = 1. At which point is the process stable
and at which is it unstable?

4.42. Under secondary eclectron emission (see DProb-
lem 4.41), the energy distribution function F (W,) for
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secondary electrons is represented sufficiently well by two
curves (I and 2) shown in the figure accompanying the
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problem. Which of the two curves represents the primary
electrons and which, the “true” secondary electrons?

9. Electromagnetism

6.1. Currents I, and I, flow in the same direction along
two parallel conductors, with I; > I,. In which of the
three regions I, Il or I11, and at what distance from the
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conductor carrying current {, is the magnetic induction
equal to zero?

5.2, Two mutually perpendicular conductors carrying
currents I, and I, lie in one plane. Find the locus of
points at which the magnetic induction is zero.

5.3. Equal currents are flowing along three conductors:
a ring of radius R (Figure (a)), an infinitely long straight

I
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Fig. 5.3 Fig.[5.4

conductor that forms a loop of the same radius R (Fig-
ure (b)), and aninfinitely long straight conductor that also
forms a loop of radius R but is broken at the point where
the loop touches the conductor (Figure (c)). Find the re-
lationships that link the magnetic induction vectors at
the center of each circle.

5.4. Three conductors carrying currents are perpendicu-
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lar to the plane of the drawing. They intersect the plane
at three points that lie on a single straight line, with the
distances from the middle conductor to the olher Lwo
being equal. The currents in the outer conductors flow
away from the reader, while the current in the middle con-
ductor flows toward the reader. How is the magnetic field
vector directed at the point on the straight line that is
perpendicular to the straight line passing through the
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Fig. 5.5 Fig. 5.6 Fig. 5.7

three conductors in the plane of the drawing and is sepa-
rated from the middle conductor by a distance equal to
the distances between that conductor and the outer con-
ductors? All three currents are equal in magnitude.
5.5. Along four parallel conductors whose sections with
the plane of the drawing lie at the vertices of a square
there flow four equal currents (the directions of these
currents are as follows: those marked with an “x” point
away from the reader, while those marked with a dot
point to the reader. How is the vector of magnetic
induction directed at the center of the square? |

5.6. Two infinitely long parallel conductors carrying
currents are directed at right angles to the plane of the
drawing. The maximum of magnetic induction is at a
point M that lies in the middle between the conductors.
The direction of the magnetic induction vector B at this
point coincides with the positive direction on the z
axis. Determine the direction of the currents flowing in
the conductors and the relationship that exists between
these currents.

5.7. Two infinitely long parallel conductors carrying
currents are directed at right angles to the plane of the
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drawing. The magnetic induction at a point M that lies
in the middle between the conductors is zero. To the
right of this point, the magnetic induction vector points
upward, at right angles to the z axis. Find the direction
of the currents flowing in the conductors, the direction
of the magnetic induction vector to the left of point M,
the relationship between the currents, and the point on
the z axis at which the magnetic induction is maximal.
The distance between the conductors is a.

5.8. Prove solely by reasoning (without performing any
calculations) that the magnetic induction on the axis at
an end face of a very long solenoid is half the value in the
middle of the solenoid. A “very long solenoid” is one
whose length is much greater than the diameter.
5.9. A current flows clockwise in a flat square loop. In

Fig. 5.9 Fig. 5.10 Fig. 5.11

the plane of the loop there lies an infinitely long st?aight
conductor carrying a current whose direction is designat-
ed by the arrow in the figure. How will the loop move
in the magnetic field created by the current flowing in the
straight conductor and how will the shape of the loop
change as a result of the action of this field? .
5.10. A conducting loop carrying a current is placed in a
nonuniform magnetic field. How will it move as a result
of the action of this field?

5.41. A direct current (constant in magnitude and di-
rection) flows in a contour made from soft wire. What
shape does this contour tend to acquire as a result of the
action of the magnetic field created by the current?
5.12. A small flat contour with a current flowing in it is
placed successively at three points on the axis of a sole-
poid in which a current also flows in the same direction.
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The points are at the middle of the solenoid (point 7), at an
end face (point 2), and outside the solenoid at a distance
from an end face equal to one-half the length of the so-
lenoid (point 8). The plane of the contour and the plane
of the cross section of the solenoid are parallel. At which
of these three points does the contour experience the
greatest interaction with the solenoid and at which is
the force minimal? Is the force attractive or repulsive at
these points? The length of solenoid is considerably larger
than the diameter.

5.13. At a small distance from a solenoid carrying a cur-
rent there is placed a contour with a current in such a

Fig. 5.13

manner that the solenoid’s axis lies in the plane of Lhe
contour. The directions of the currents in solenoid and
conlour are shown by arrows. How does the contour
move? How will il move if the current in it flows in the
direction opposite to the one shown in the figure?

5.14. Betlween two fixed contours, I and 3, carrying cur-
rents that flow in the same direction there is suspended

Q @5 U 00

Fig. 5.14 Fig. 5.15

another contour, 2, that also carries a current. Contour 2
is oriented in such a manner that the forces caused by
the currents in contours 7 and 3 are opposite in direction,
equal in magnitude, and lie along a single straight line;
thus, contour 2 is in equilibrium. Is this state of equilib-
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rium stable or unstable? Consider the case where the
current in contour 2 has the same direction as the cur-
rents in I and 3 and the case where the direclions are
opposite.

5.15. Two contours whose planes are parallel to each
other and are separated by a certain distance carry cur-
rents that flow in the same direction. One contour is left
fixed while the other is positioned in a different manner
with respect to the first: in one case its plane is turned
by 90°, in the other by 180°, while in the third case it is
just moved parallel to itself
over a certain distance. In

the smallest?

5.16. In a uniform magne-
tic field there are two charged Fig. 5.16
particles moving with velo- T

cities v, and v, and carrying

equal charges, with | v, | = | v, | = v. The velocity of
one particle forms an angle o; with the direction of the
field, while the other velocity forms an angle o,. In
what parameters does the motion of one particle differ
from that of the other? Determine which of the parame-
ters is greater for which particle.

5.47. The device shown in Figure (a) is commonly used
to measure the charge-to-mass ratio of the electron. The
electrons that leave the cathode C are acceierated by an
electric field that exists in the space between the cathode
and the anode A. A fraction of electrons fly through the
hole in the anode. These electrons, leaving region I of the
device, fly into the region where there is no clectric ficld.
In this region the electrons are deflected from a straight
line via a magnetic field directed perpendicularly to the
plane of the drawing. This field is generated by two so-
lenoids. The region I/ where the trajectory of the elec-
trons is bent lies between these two solenoids. By increas-
ing the current flowing through the two solenoids connect -
ed in series we can direct the electrons into a Faraday
cylinder F, with a galvanometer G registering the result-
ing current. Any further increase in the solenoid current
results in a drop in the current flowing through G, since
the electrons begin to move along a circle of a smaller ra-

L

which of these three cases Vi ~
one twiltl havi Lo gexzform} .t}}lle - AF = -
reatest work and in which, -
v —T




dius. The dependence of the galvanometer current on the
solenoid current is illustrated by the curve in Figure (b).
The following quantities are known in measurements: the
potential difference U
between anode and cath-
ode, the curvature ra-
dius R of the axial line
of region II (assuming
that the majority of elec-
trons deflected by the
magnetic field travel
along this line), the num-
ber of turns N, per unit
length of solenoid, and
the solenoid current 7
at which the galvano-
meter current is maxi-
mal. How to determine
the charge-to-mass ratio
of the electron knowing
the values of Lthese quan-
Lities?
5.18. A charged parti-
cle of mass m and charge
Q has acquired a certain
Fig. 5.17 velocity by  passing
through a potential differ-
ence U, With this velocity it flies into the field of a
parallel-plate capacitor, with the distance between the
plates being I, the potential difference being U. The veloc-
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ity of the particle is directed parallel to the plates.
Where should the magnetic field that makes the particle
move along a straight line in the capacitor be directed
and what should its value be (the induction B)? * -

9.19. A direct current I is flowing through a plane in the
direction designated by an arrow. The plate is placedin a
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transverse magnetic field B. As a result of the Hall effect
there appears a transverse potential difference. What is
the sign of the potential at point a if the plate is made of
metal and if the plate is an n-type or p-type semicon-
ductor?

5.20. Two contours are positioned in such a manner that
their planes are parallel Lo each other. Contour I carries
a current whose direction is designated by an arrow. The

@ @ *Eﬂ* W
Fig. 5.20 Fig. 5.21

contours move in relation to one another, but their planes
remain parallel in the process. What is the direction
of the current induced in contour 2 when the contours are
moved toward each other or away from each other?
5.21. A spiral made from elastic wire is connected to a
DC source. The spiral is stretched. Will the current flowing
in the spiral become greater or smaller in the stretching
process than the initial current or will it remain un-
changed?

5.22. A solenoid carrying a current supplied by a DC
source with a constant emf contains an iron core inside
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Fig. 5.22 Fig. 5.23

it. How will the current change when the core is pulled
out of the solenoid: will it increase, decrease, or remain
the same?

5.23. Two identical inductances carry currents that
vary with time according to linear laws. In which of the
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two inductances is the self-induction emf greater? Will
the values or signs of the self-induction emf’s change if
the currents begin to increase in the opposite direction
after they pass through zero (with the linear laws retained
in the process)?

5.24. A current that varies with time according to a law
depicted graphically in the figure passes through an induc-
tion coil. In which of the moments denoted in the figure
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will the self-induction emf be maximal (the inductance of
the coil remains unchanged in the process)?

5.25. Various circuits are used to observe the phenome-
non of self-induction. Among these are the circuits shown
in Figures (a) and (b). In Figure (a), key A is initially
opened and the current flows through the induction coil L
and resistor R connected in series. In Figure (b), key K
is initially closed and the current branches off to R and
L. In both circuits the resistance of the coil Lismuch low-
er than R. Can an induction emf be generated in either
one of these circuits that is higher than the emf of the
DC source?

5.26. When a certain circuit consisting of a constant
emf, an inductance, and a resistance is closed, the cur-
rent in it increases with time according to curve I (see
the figure accompanying the problem). After one parame-
ter (&, L, or R) is changed, the increase in current follows
curve 2 when the circuit is closed a second time. Which
parameter was changed and in what direction?

5.27. A current is flowing in a circular contour I whose
radius is R. A second contour, 2, whose radius is much
smaller than that of the first, is moving with a constant
velocity v along the r axis in such a manner that the
planes of the contours remain parallel to each other in the
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course of the motion. At what distance from contour 7
will the emf induced in contour 2 be maximal?

5.28. A certain circuit consists of a DC source with emf
&, an induction coil LI, and a key KI. No resistance is
present in the circuit. Another coil, L2, which is con-
nected electrically to a resistor R through a key K2, is
fastened to LI. At some moment in time key KI is
closed. After a certain time interval K2 is closed. How do

Fig. 5.26 Fig. 5.28
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the current in the primary circuit (the one containing &),
the induction eml in the secondary circuit (the one with
L2 and R), and the current in the secondary circuit vary
with time?

5.29. An infinitely long straight conductor and a flat
rectangular contour with sides a and b and with N turns
lie in a single plane. The distance between the straight
conductor and the side of the contour closest to the
straight conductor is c. Determine the following quanti-
ties: (1) the mutual inductance of the conductor and the
contour; (2) the quantity of electricity induced in the
contour if the contour is rolated through 90° about the
AB axis provided that a current I is flowing in the con-
tour and the resistance of the contour is R; (3) the work
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that must be done to rotate the contour through 180°
about the AB axis provided that there is current I both
in the long conductor and in the contour and that the
sense of the current in the contour is clockwise (in the
plane of the drawing).
5.30. A common device used in electrical measure-
ments is the so-called Rogowski loop. It constitutes a
flexible solenoid that can be
transformed into a torus if
7 the two ends are brought to-
Hnnnm gether (Figure (a)). The leads
can be connected to an AC
ammeter, a ballistic galvano-
meter*, or an oscillograph.
By circling a conductor with
a Rogowski loop one can mea-
sure an alternating current
flowing constantly in the
conductor or even isolated
changes in the current, such
as those that occur when the
current is switched on or off
or when pulses pass through
the circuit. Suppose the Ro-
[]]IH gowski loop forms a toroid
that encircles a conductor
" carrying a direct current [
(Figure (b)). The parameters
Fig. 5.30 of the loop are as foll.ows:
the cross-sectional area is S,
the number of turns is N,
the resistance of the winding is R, and the radius of the
toroid is r. 1t is assumed that the width d of the loop prop-
er is very small compared to r. At a certain moment the
current is switched off; the current becomes zero in a very
short interval. The ballistic galvanometer in the circuit
of the loop measures the quantity of electricity Q that
has passed through the loop (and the galvanometer).
HHow can one find the current I that was flowing in the
conductor prior to switch-off knowing the values of the
above-mentioned parameters?

* A ballistic galvanometer has a large period of oscillations.
It is commonly used to measure the quantity of electricity
that flows in a circuit in the form of a short pulse.
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5.31. A flat coil with a cross-sectional area S and with
N turns is placed in a magnetic field. The leads of the
coil are connected to an oscillograph. When the coil is
moved out of the field, an induction emf is generated in
it, and the oscillogram of this emf is shown in the figure.
How do the maximal value of the emf, &,,,, and the area
under the curve depend on the rate with which the coil is
moved out of the field?

9.32. Suppose that we have two solenoids of the same
length. Their diameters differ only to the extent to which

[c——j\r—'—m’
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one can be fitted onto the other. The inductances of the
two solenoids can be considered the same and equal to L.
Here are the ways in which the solenoids can be con-
nected:

(1) the solenoids are connected in series and are sepa-
rated by a large distance;

(2) the solenoids are connected in parallel and are sep-
arated by a large distance;

(3) the solenoids are connected in series, one is fitted
onto the other, and the senses of the turns coincide;

(4) the solenoids are connected in parallel, one is fitted
onto the other, and the senses of the turns coincide;

(5) the solenoids are connected in series, one is fitted
onto the other, and the senses of the turns are opposite;

(6) the solenoids are connected in parallel, one is
fitted onto the other, and the senses of the turns are oppo-
site.
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Determine the total inductance for each of the above
cases.
5.33. The current flowing in a certain inductance coil
varies in time according to the curve shown schematically
_ in the figure. Draw the
- curve representing the in-
duced emf as a function
of time (also schematically):
- 5.34. Two similar parallel
y / electron beams point in
— v *— the same direction. The
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linear dimensions of the

cross section of each beam
Fig. 5.33 are small compared to the

distance = between the
beams. Suppose that v is the electron velocity and n
is the electron concentration in either beam. In a coordi-
nate system with respect to which the electrons are in
motion there are two types of interactions, the electrostat-
ic and the magnetic. Which of the two is greater in
magnitude?
5.35. Electric charges do not generate magnetic field in
a system of coordinates (better to say, frame of reference)
where they are at rest. The magnetic field that surrounds
a conductor carrying a current is generated by the charges
that are moving in the conductor. Since the electron con-
centration in a conductor is of the order of 102 ¢cm-3, the
directional velocity of the electrons in the conductor is of
the order of one millimeter per second (if the current den-
sity is estimated at 100 A/cm?). We position the con-
ductor carrying the current in such a manner that it follows
the magnetic meridian at the point where the conductor
is present. Just as in Oersted’s experiment, a magnetic
compass needle placed under the conductor will be de-
flected. If the needle is moved along the conductor with a
speed equal to the directional velocity of the electrons
in the conductor (i.e. of the order of several millimeters
per second), the electron will be at rest in relation to the
needle and, since the magnetic field in the system connect-
ed with the needle must be nil, the needle will not be
deflected. More than that, if the needle is moved along the
conductor with a speed greater than that of the electrons,
the needle will be deflected in the opposite direction. Are
these assertions correct?
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5.36. How are the magnetic induction vector and the
magnetic field vector directed inside and outside a bar
magnet?

5.37. Two types of steel are characlerized by the hyste-
resis loops shown in Figure (a) and (b). The loops are ob-
tained in the processes of magnetization and demagneti-
zation of the steels. Which of the two types is best suited
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for using as the core of a transformer and which, for using
as a permanent magnet?

5.38. How can one use the B vs. H graph (the magneti-
zation curve) to determine the work that a source of cur-
rent must perform to magnetize a ferromagnetic core of a
solenoid whose length is ! and whose cross-sectional area
is §? The magnetization curve is shown in the figure ac-
companying the problem.

5.39. Does a hysteresis loop possess sections in which
we can formally assign to permeability a value that is
zero or infinite or negative?

5.40. A straight conductor passes through a ferromag-
netic toroid, as shown in the figure accompanying the
problem. The conductor carries a current that first grows
to a certain maximal value and then falls off to zero, as
a result of this the toroid becomes magnetized. Indicate
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the directions of the lines of force for magnetic induction
in the toroid and find the sections or points on the hyste-
resis loop corresponding to the state of the toroid after
the current has ceased to flow (see the figure accompanying
Problem 5.39).

9.41. Suppose we wish to calculate the circulation in-
tegrals of the magnetic field strength and magnetic induc-
tion along various contours, some of which lie entirely
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in a vacuum while the other partially overlap a medium
with a permeability p. The “x” inside a small circle
marks the section of a conductor carrying a current by
the plane of the drawing. Are all the circulation integrals
of the magnetic induction equal to each other? Is this
also true of the circulation integrals of the magnetic

field strength?

6. Oscillatory Motion and Waves

6.1. At two momentsin time the displacements of a har-
monically oscillating point are the same. Can we state,
on the basis of what we have just said, that the phases at
these moments are also the same?

6.2. The oscillations depicted by curve I in the figure
are expressed by the equation £ = A4 sin of. What is the
equation for the oscillations depicted by curve 2?

6.3. Two material particlesof equal mass are performing
harmonic oscillations whose graphs are shown in the fig-
ure. What oscillation has a higher energy?
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6.4. As a result of adding two mutually perpendicular
oscillations of equal {requency, the motion of an object
occurs along an ellipse; in one case the motion is clock-
wise, while in the other it is counterclockwise. Write the

l/h(}{/ A

Fig. 6.3

equatlions of motion along each coordinate axis, assuming
that the initial phase along the x axis is zero.

6.5. Two mutually perpendicular oscillations are added.
In one case the graphs representing these oscillations are
those shown in Figure (a) and in the other, those shown in
Figure (b). In what respect do the resultant oscillations
differ?

6.6. Suppose that the addition of two mutually perpendic-
ular oscillations in which a malerial particle partici-
pates results in an ellipse, with the direction of motion
indicated by the arrow in the figure. The equation of mo-
tion along the z axis can be written in the form z =
4, sin ot and that along the y axis, in the form y =
A,sin (ot + ¢). Determine the condition that ¢ must
meet.

(13.7. Two mutually perpendicular oscillations obey Lhe
aws

x — A, sin ot and y = A, sin (0t + ).

The addition of these two oscillations leads to the Lissa-
jous figure shown in the drawing accompanying the prob-
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Iem. Delermine the relationship between o, and w, and
the initial phase ¢ if the figure is traversed in the direc-
tion shown by the arrows.

Xy y
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Fig. 6.7

Fig. 6.6 Fig. 6.8

6.8. Two mutually perpendicular oscillations arc per-
formed according to the laws

z = A;sin 0, and y = A, sin @,t.

Determine the relationship between o, and w, using the
Lissajous figure shown in the drawing accompanying the
problem.

6.9. A material particle oscillates according to the harmon-
ic law. At which of the two moments, 7 or 2, is the kinet-
ic energy higher and in which, the potential encrgy?
Al which moment is the acceleration of the particle at
its maximum (in absolute value)?

6.10. Two loads whose masses are m; and m, are suspend-
ed by springs (m; > m,). When the loads were attached
to the unloaded springs, it was found that the elongations
of the springs were the same. Which of the two loads oscil-
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lates with a greater oscillation period and which of the
Iwo loads possesses a higher energy (provided that the
oscillation amplitudes are equal)? The springs are con-
sidered massless.
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6.11. A chemical test tube is balanced by a load al its
bottom so that it does not tip when submurged in a liquid
(the cross-sectional area of the tube is S). After submerg-
ing to a certain depth, the tube begins to oscillate about
its position of equilibrium. The tube, whose mass togeth-
er with the mass of the load is m, is in the stale ol equi-
librium in a liquid with a density p when its bottom is be-
low the level of liquid by a distance I. Determine the oscil-
lation period of the tube assuming that the viscosity of
the liquid is nil.

6.12. One way to measure the massof anobject in a space
station at zero gravily is lo use a device schematically

— __ -~ —
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shown in the figure. The principle of operation of this
device is as follows. First the austronaul measures the
oscillation frequency of an elastic system of known mass.
Then the unknown mass is added to this system and a new
measurement of the oscillation frequency is taken. [Tow
can one determine the unknown mass from the two mea-
sured values of frequency?
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6.13. Two simple pendulums having equal masses but
different lengths are in oscillatory motion with the same
angular amplitudes. Which of the two pendulums has a
higher oscillation energy?

6.14. Two pendulums, a physical one in the form of a
homogeneous rod and a simple one, of equal mass and

Fig. 6.13 Fig. 6.14 Fig. 6.15

length are in oscillatory motion with the same angular
amplitudes. Which of the two pendulums has a higher os-
cillation cnergy?

6.15. An axis passes Lhrough a disk of radius R and mass
m al. a distance R; from the disk’s center. What will be
the period of oscillations of the disk about Lhis axis
(which is fixed)?

6.16. Consider a physical pendulum that isa homogeneous
rod of length [. At what distance 1. from the center of
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gravily of the rod must the point of suspension lie for the
oscillation period to be maximal?

6.17. A force acting on a material particle varies accord-
ing to the harmonic law

F = Igsin ot.
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At time ¢t = 0 the velocity v is zero. 1{ow do the velocity
and position of the parlicle vary with time?

6.18. A force acting on a material particle varies ac-
cording to the harmonic law

I = F, cos wt.

At time ¢t = 0 the velocity v is zero. How do the ve-
locity and position of the particle vary with time?

6.19. The time dependence of the amplitude of damnped
oscillations is presented in the figures on a semilogarith-
mic¢ scale, that is, the time is laid off on the horizontal
axis on a linear scale and the amplitude, on the vertical

nA
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axis on a logarithmic scale. Construct the time depen-
dence of the energy of these oscillations using the semiloga-
rithmic scale. Set the initial values of the logarithins of
the amplitude and energy of the oscillations equal.
6.20. Suppose that certain damped oscillations are re-
presented in polar coordinates. Depict these oscillations in
Cartesian coordinates with the phase of the oscillations
laid off on the horizontal axis and the displacement, on
the vertical axis, assuming that the ratio of the sequen-
tial amplitudes of oscillations and the initial phase remain
unchanged. Find the logarithmic decrement of the oscil-
lations.

6.21. Suppose that a pendulum oscillates in a viscous me-
dium. The viscosity of the mediuim and the mass and
length of the pendulum are such that the oscillations are
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aperiodic. The pendulum is deflected from the posilion
of equilibrium and released. How will the absolute value
of the the pendulum’s velocity vary with time: will it
increase continuously, decrease continuously, pass
through a maximum, or pass through a minimum?
6.22. A load suspended by a spring in a viscous medium
performs damped oscillations. How should one change the
Ienglh of the spring (preserving all the characteristics of
the spring, i.e. the thickness of the wire, the density of
the turns, etc.) so that the oscillations become aperiodic?
The mass of the spring is assumed to be negligible com-
pared Lo the mass of the load.

6.23. An oscillalory circuil consists of a capacitance C,
an inductance L, and a resistance 2. Danped oscillalions
sel in in this civcuit. (1) How should one change Lhe dis-
tance between the plales of the capacitor for the discharge in
the circuit to become aperiodic? (2) How should one
change the capacitance and inductance (with the resistance
remaining unchanged) for the damping in the contour to
diminish provided Lhat the natural frequency of free os-
cillations remains the same? How will this change the
frequency of damped oscillations? (3) How will the loga-
rithmic decrement of the oscillations change il the re-
sistance and inductance change by the same factor?
6.24. T'wo spheres of the same diameler but of different
mmasses are suspended by strings of equal Tength. If the
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spheres ave deflecled from their positions of equilibrium,
which of the two will have a greater oscillation period
and which will have a greater Jogarithmic decrement if
their oscillations occur in a real medinm with viscosity?
6.25. A “dancing spiral” is sometimes demonstrated at
lectures. A spring fixed at ils upper end is submerged by
its lower end into mercury. Voltage supplied by a DC
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source is applied to the upper end and the wercury.
When current flows in the spring, the rings of the spring
tend to draw together, the spring gets shorter, and the
lower end moves out of the mercury. The current cecases,
and the lower end isagain submerged in the mercury. The
process repeals itself. Whal oscillations does the spring
perform in the process: free, forced, damped, or self-oscil-
lations?

6.26. Which of the two diagrams, Figure (a) or Figure
(b), represents the dependence of the amplitude of displace-
ments in forced oscillations on the frequency of the driv-
ing force and which represents the frequency dependence
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of the velocity amplitude? In what parameter determining
the oscillation conditions does cach curve represented in
Figures (a) and (b) differ? What paramelers determine the
intersection of each curve with the vertical axis in Figure
(a) and the position of the maximum?

6.27. How will the displacement amplitude at o =0
that is A,, the maximal amplitude 4 ,,, and the resonance
frequency w. vary if the resistance of the medium in
which the oscillations occur decreases provided that all
the other parameters that determine the forced oscilla-
tions remain unchanged?

6.28. The curve depicting the dependence of the ampli-
tude of forced oscillations on the frequency of the driving
force in a medium with no resistance tends to infinity as
® = m,. Why is this situation meaningless not only from
the physical standpoint but also from the mathematical
standpoint? ITow does a system oscillate in a medium
that has practically no resistance?

6.29. Two forced oscillations with the same natural fre-
quencies have amplitudes that differ by a factor of 2 for
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all values of the frequency of the driving force. In what
parameter, among the amplitude of the driving force,
the mass of the oscillating object, the elasticity coeffi-
cient, and the resistance of the medium, do these systems
differ? It is assumed that these systems may differ only
in one parameter.
6.30. Waves on the surface of water in the form of paral-
Icl lines advance on a wall with an aperture much narrow-
er than the wavelength. What will be the shape of the
waves propagating on the surface”behind the wall (and
aperture)?
6.31. In the standing waves that form as a result of re-
flection of waves from an obstacle the ratio of the ampli-
tude at a crest to the
amplitude at a node is
6. What fraction of the
energy passes past the
obstacle?
6.32. A wave is propa-
gating in a medium with
damping. The distance
from the source of oscil-
lations (in units of the
wavelength) is laid off
[ L on the horizontal axis
e s 77+ and the common loga-
Fig. 6.32 rithm of the oscillation
amplitude is laid off
on the verltical axis. Using the graph shown in the fig-
ure accompanying the problem, write a formula that will
link the amplitude with the distance.
6.33. The formula that expresses the speed of sound in a
gas can be written in the following form:

c=1V vplp. (6.33.1)

Here vy is the specific heat ratio (the ralio of the specific
heat capacity of the gas at constant pressure to the spe-
cific heat capacity at constant volume), p is the pressure of
the gas, and p is the density of the gas. Using this formu-
la as a basis, can we stipulate that upon isothermal change
of the state the speed of sound in the gas grows with pres-
sure?
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6.34. The figure demonstratesthe temperature dependence
of the speed of sound in neon and waler vapor on the
log-log scale. Which straight line corresponds to the light-
er of the gases?

6.35. The dependence of the frequency of oscillations reg-
istered by a receiver when the receiver and the source of
sound approach each other depends on whether the source
moves and the receiver is fixed, or whether the source is
fixed and the receiver is in motion. The curves in the fig-
urc represent the dependence of the ratio of the received
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frequency of oscillations to the frequency cmitted by the
source on the ratio of the rate of relative motion to the
velocity of sound. Which of the two curves corresponds
to a moving source and which, to a moving receiver?
The medium where the propagation of sound takes place
(air or water) is assumed fixed.

6.36. An observer standing at the bed of a railroad hears
the whistle of the locomotive of the train that rushes past
him. When the train is approaching the observer, the fre-
quency of the whistle sound is v,, while when it has passed
the observer, the frequency is v,. Determine the speed
of the train and find the whistle frequency when the ob-
server moves together with the train. The speed of sound
is assumed to be known.

6.37. Two observers stand at different distances from the
bed of a railroad. When a train passes them, cach hears
how the frequency of the train whistle changes, with the
change occurring along curve 7 for one observer and along
curve 2 for the other. Which of the two observers is stand-
ing closer to the roadbed?
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6.38. A source of sound whose frequency is v, is moving
with a speed v. The waves travel to a fixed obstucle,'urc
reflected by the obstacle, and are registed by a receiver
that moves together with the source. What frequency is
registed by the receiver if the speed of sound waves is c?
6.39. A source of oscillations S is fixed to the riverbed
of a river whose walers flow with a velocity v. Up and
down the stream there are fixed (also to the river bed)

Fig. 6.37 Fig. 6.39

two receivers, Ry and R, (sec the ligure). The source gen-
crales oscillations whose frequency is v,. What frequencies
do receivers R, and R, register?

6.40. Two boats are floating on a pond in the same direc-
tion and with the same speed v. Each boat sends,
through the water, a signal to the other. The frequencies
v, of the generaled signals are the same. Will the times

¥~

Fig. 6.40 Fig. 6.41

it takes the signals to travel from one boat to the other be
the same? Are the wavelengths the same? Are the fre-
quencies received by the boals the same?

6.41. An underground explosion al a point 4 generates
vibrations. Seismographs thal are capable of measuring
longitudinal and transverse waves separately arve placed
at another point B. The time inlerval bet ween the arrival
of longitudinal and transverse waves is measured. How,
knowing the velocities of propagalion of longitudinal
and transverse waves and the time difference between
arrival, Lo determine the distance S belween points A
and B?

6.42. A sound wave travels in air and falls on the inter-
face between air and water at an angle ;. At what angle
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a, will the wave propagate in the medium: greater (han
a, or smaller than a,?

6.43. There are many documented cases when an explo-
sion at a point A will be heard al a point B that is locat-
ed far away from A4 while in a certain region, known as
the zone of silence, located much closer to A than to B
the explosion is not heard. Among the reasons for this is
the deflection of sound waves caused by the presence of a
vertical temperature gradient in the almopshere. How
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should Lhe air Lemperalure change with altitude for the
direction of propagalion of sound waves to be as shown
in the figure?

6.44. At a depth h, below ground level there isa pockel
of waler of deplth h,. Whal type of artificial seismic
waves, longitudinal or Lransverse, is needed o measure
the depth of the water pockel?

6.45. An airlane is in supersonic tlight at an altitude h.
At what smallest distance a (along the horizontal) from
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the observer on the ground is there a point from which
the sound emitted by the airplane motors travels to the ob-
server faster than from point A that is directly above the
observer?
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7. Alternating Current

7.1. Using a Rogowski loop (see Problem 5.30), one can
measure Lhe effective value Io¢ of an alternating current
flowing in a conductor. The loop has a rectangular cross
section with N turns. The dimensions and the position of
the loop are shown in the figure. Determine the effective
emf gencrated in the loop by the alternating current.
7.2. The figure shows the vector diagram of reactances
and resistances in an AC circuit. Construct a similar dia-
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gram for a circuit in which the current frequency is doubled
and the emf amplitude is the same, and determine how
the current will change as a result of this.

7.3. What is the frequency dependence of the current, of
the phase shift between voltage and current, and of the
consumed power for a circuit consisting of a resistance
and an inductance connected in series provided that the
emf amplitude remains constant?

7.4. What is the frequency dependence of the current, of
the phase shift between current and voltage, and of the
consumed power for a circuit consisting of a resistance
and a capacitance connected in series provided that the
em{ amplitude remains constant?

7.5. A circuit (Figure (a)) conlains an alternating emf, a
resistance, and a reactive element (only a capacitance
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or only an inductance). What is this element if the time
dependences of the current in the circuit and the emf of
the source are those as shown in Figure (b)?

7.6. Ave the readings of the ammeter 48 cqual to the
sum of the readings of the ammeters A7 and A2 for the
cases depicted in Figures (a) and (b)?
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7.7. Are the readings of the voltmeter V3 equal {o the
sum of the readings of the voltmeters VI and V2 for the
cases depicted in Figures (a) and (b)?

7.8. The current flowing through the resistance in an AC
circuit shown in Figure (a), where a resistance R, a ca-
pacitance C, and an inductance L are connected in series,
is I = &R. What will be the current in the AC circuit
when the inductance and the capacitance connected in
parallel are connected in series with the resistance (Fig-
ure (b))?

7.9. The power in an AC circuit varies with time accord-
ing to the curve in the figure. How, knowing the maxi-
mal and minimal values of the power, to determine the
numerical value of the phase shift between voltage and

93



current? What is the period of variation of the power?
7.10. To demagnetize watches that have been accidental-
ly magnetized, they are placed inside a solenoid connected
to an AG source. The watches are then slowly removed
from the solenoid. 1xplain why the walches become de-
magnetlized as a result of such manipulations.
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7.41. A full-wave rectifier (the circuit is shown in the fig-
ure) rectifies the current that flows continuously in one
direction. Sketch the time dependence of the current, ig-
noring all losses, and, assuming that the load of the
rectifier constitutes a resistance, calculate the average
valuc of the current. If the reclifier is loaded to a primary
winding of a transformer, is a constant emf generated in
the secondary winding?

7.12. In the circuit shown in the Figure, a capacitor of
capacitance C is connecied in parallel with a resistor R.
How will this influence the time dependence of the cur-
rent?

7.13. Two semiconductor diodes in opposition to each
other in series are connected to the primary winding of a
transformer. Draw the oscillograms of the current in the
primary winding and of the emf generated in the scconda-
ry winding.
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7.44. Two vacuun diodes in opposition to cach other in
parallel are connected to the primary winding of a trans-
fmmol The amplitude of the emf applied to the primary
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winding exceeds considerably the voltage at which Lhe
diodes go into the saturation mode. Draw the oscillograms
of the current in the primary winding and of the emf gen-
crated in the secondary winding.

8. Optics

8.1. At what distance f, from a biconvex lens must we
place an object for the distance between the object and
the real image 1o be minimal?

8.2. Two biconvex lenses @ and b with the same radii of
curvature are manufactured from glass samples with differ-
ent refraclive indices. How should we employ the graphs
that represent the dependence of the distance f, between
a lens and the image of an object on the distance f, be-
tween the lens and the object in order Lo determine the
ratio of the refractive indices?

8.3. When taking a picture of a group of objects that are
positioned at different distances from the camera, one
must allow for the so-called depth of focus, or the limits
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of the greatest and the smallest distance between which
the image is sharp for a given focus setting of the camera.
Why is the depth of focus the greater the smaller the
aperture setling?

8.4. A pinhole camera consists of a rectangular (hollow)
glass prism whose front base and lateral faces are black-
ened and whose back base is covered with a photographic
plate. A small circular section of the front base is left

Fig. 8.4 Fig. 8.6

unblackened, and through this “pinhole” the light enters
the camera. The refractive index of the glass is n, the dis-
tance from the object to the camera is a;, and the length
of the camera is a,. Determine the ratio of the size of the
image, y,, to the size of the object, y,, assuming that y, <

a,.
8.5. Light falls on an end face of a glass rod at an angle
a. What is the smallest refractive index that the glass may
have so that the light after entering the rod cannot leave
it through a lateral face irrespective of the values of a?
8.6. At what angle to each other must two flat mirrors
be positioned for a beam of light incident on one of the
mirrors at an arbitrary angle in a plane that is perpendic-
ular to the mirror surface to be reflected from both mir-
rors in such a manner that the refracted beam is parallel
to the incident beam? Is a prism suitable for this purpose?
8.7. An electric bulb is hanging above the center of a
round table whose radius is R. At what height 2 must it
be hung for the intensity of illumination at the edge of
the table to be maximal?
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8.8. A beam of light propagates through a medium 7 and
falls onto another medium, 2, at an angle a,. After that
it propagates in medium 2 at an angle a,. The light’s
wavelength in medium 7 is A;. What wavelength has the
light in medium 2?

8.9. Two identical coherent sources of light, S, and S,,
separated by a distance a produce an interference pattern
on a screen. The wavelength of the monochromatic light

o

Fig. 8.7 Fig, 8.8 Fig. 8.9

emitted by the sources is A. Determine the maximal num-
ber of interference fringes that can be observed assuming
that the screen is infinitely large.

8.10. In an experiment that involves the observation of
interference of light via two Fresnel mirrors, the source of
light is positioned symmetrically in relation to both mir-
rors at a distance ! from the boundary between them. How
does the distance between the first interference fringes on
a screen that is positioned far from the mirrors depend on
the angle 0 between the mirrors?

8.11. When there is interference of light waves emitted
by two coherent sources, the geometric locus of points
with the same difference in the phases of the oscillations
that arrive at that point from the two sources constitutes
a surface whose sections with the plane of the drawing are
the curves ab and a’'b’ shown in the figure. What is this
surface?

8.12. A transparent dielectric is deposited in the form
of a thin film on two substrates made of different dielec-
trics. Both films form geometrically identical wedge-like
layers. The refractive index of the material of the film
is » and those of the substrates are n; and n,, with n, <<
n < n,. Suppose that two light beams of similar spec-
tral composition fall on the two systems at the same
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angle. In what respects do the resulting interference pat-
terns differ?

8.13. An air wedge is illuminated by monochromatic
light. The distance between Lhe resulting interference
fringes is a. Ilow will the distance between the interfer-
ence fringes change if the space between the plates that
constitutes the wedge is filled with a transparent liquid?
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8.14. A plano-convex lens with a radius of curvature
R, is lying on a reflecting cylindrical surface whose radi-
us of curvature is R,. The lens is illuminated from above.
What shape do the interference fringes have?

8.15. A plano-convex segment of a glass cylinder whose
curvature radius is R is lying on a flat plate. A paral-
lel beam of light falls on this segment from above. What
shape will the interference fringes have and how will the
distance between the fringes change as we move away from
the straight line along which the segment louches the
plate?

8.16. During observation of Newton rings, a small par-
ticle of unknown thickness a got between the lens and
the plate. How can one determine the wavelength of
monochromatic light incident from above on the lens
using only graphical considerations? What scales along
the vertical and horizontal axes are preferable?

8.17. On a reflecting substrate there lies a transparent
plane-parallel plate that forms an angle a with the sub-
strate. Thus a wedge-like film of air is formed. The sub-
strate has a triangular ledge whose cross section is an iso-
sceles triangle with angles 0 at its base. The plate is illu-
minated with monochromatic light from above. As-
suming that the angles o and 0 are small, sketch the posi-
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tions of the interference fringes. The size of the wavelength
is shown in the figure.

8.18. In the observation of the interference paltern in an
air wedge (Figure (a)) there sometimes appear interference
fringes with distortions caused by the presence of a
ledge or a dent on the substrate. Which of the two inter-
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ference patterns in Figures (b) and (c) corresponds to
which defect?

8.19. Light from a distant source falls on a screen with a-
round hole. At a certain distance from this screen an-
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Fig. 8.19 Fig. 8.20

other screen is placed, and it ison this screen that the dif-
fraction pattern is observed. How will the intensity of il-
lumination at the center of the second screen change if
the distance between the screens is gradually increased,
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that is, does the intensity of illumination remain consiant
or does it monotonically decrease or does it vary period-
ically?

8.20. Light from a distant monochromatic source, which
can be considered point-like, is incident on a small
round opaque disk or sphere. A screen is positioned at a
certain distance z from the object. This distance, z,
is great if compared with the diameter of the object, so
that the object covers only several Fresnel zones into
which the plane wave can be partitioned. Can it be pos-
sible that under such conditions the geometric shadow on
on the screen contains a bright spot in its center?
8.21, What maxima in the spectrum obtained through
the use of a difiraction grating correspond to the line
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with a longer wavelength and what maxima, to the line
with a shorter wavelength? What approximately is the
ratio of these wavelengths?

8.22. In a spectrum obtained through the use of a diffrac-
tion grating, a spectral line is obtained in the first order
at an angle @,. Determine the highest order of the spec-
trum in which this line can be observed by means of the
same diffraction grating if the light falls on the grating
at right angles to the grating’s surface.

8.23. Suppose the wavelength of a spectral line is mea-
sured via two diffraction gratings. The spectral maxima in
the zeroth and first orders have the shape depicted in the
figures. The scales used in both figures are the same.
Which grating has a larger period and which, a higher re-
solving power? Estimate approximately the resolving
power of each grating assuming that the natural line
width and the Doppler line width are considerably small-
er than the one obtained in experiments.

8.24. Suppose there are two diffraction gratings with spac-
ings ¢, and ¢, and a total number of lines N, and N,,
respectively. Here ¢, << ¢, and N, > N,, but the product
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¢N is the same for both gratings. Which of the two grat-
ings has a greater maximal resolving power if the same
spectral line is observed at normal incidence of light on
the gratings?
8.25. A parallel beam of light falls at an angle 6 on a flat
diffraction grating with a spacing d. Determine the fun-
damental grating condition for the wavelength A, the
maximum order of the spectrum in which the appropri-
ate spectral line can be observed, the maximum wavelength
for which a line in the spectrum can be resolved, and the
maximum dispersive power of the grating?
8.26. A phonograph record can be used as a reflecting
diffraction grating. To obtain a clear difiraction pattern,
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one must direct the light at an angle that is as close to the
grating angle to the surface of the record as possible.
Why?

8.27. What minimal value can the Brewster angle have
when light falls from air onto the surface of any dielec-
tric? )

8.28. When light is incident on a transparent dielectric
at the Brewster angle (tan o = n), the reflected I}ght
proves to be completely polarized. Is the refracted light
also completely polarized in this case?

8.29. Natural nonpolarized light is incident on a double-
refracting crystal. The normals to the ordinary wave (0)
and the extraordinary wave () are directed as shown in
the figure. Find the ratio of the wavelengths of these
waves. '

8.30. A T-shaped pipe with blackened walls is filled
with a turbid medium. Light falls onto one end of the
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pipe in the direction designated by I. As a result of scat-
tering, a fraction of the light emerges from the pipe in
the direction designated by 2. Prove that this fraction is
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polarized and determine the direction in which the elec-
tric field vector oscillates in this fraction.

8.31. Suppose that a ray of light falls on a flat boundary
of a double-refracting crystal. In one case the crystal has
been cut in such a manner that the wave surfaces of the
ordinary and extraordinary rays have the form depicted
in Figure (a), while in

\ / U the other case it has
(a) (b

been cut in such a man-
ner that the correspond-

Fig. 831 ing wave surfaces have

the form shown in Fig-

[ ; ure (b). How is the optic
T === 1 axis of the crystal direct-

ed in each case and is
the crystal positive or
negative?

8.32. Natural light with intensity I, passes through two
Nicol prisms whose transmission planes are at an angle
0 to each other. After the light has passed through the
second prism, it falls on a mirror, is reflected by the mir-
ror, and passes through the two Nicol prisms once more.
What is the intensity I of the light that has travelled this
path?

8.33. Polarized light passes through a transparent sub-
stance that is placed in a longitudinal magnetic field.
The result is the so-called Faraday effect (rotation of the
polarization plane in a magnetic field). After passing
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through the substance (and magnetic field), the light is
reflected by a mirror and travels in the opposite direction,
whereby it travels through the magnetic field once more
but in the opposite direction. Will the angle of rotation
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Fig. 8.33

of the polarization plane be doubled or will it cancel it-
self out?

8.34. When an electric field is applied to a capacitor that
is submerged in nitrobenzene, artificial anisotropy
emerges in the medium and the nitrobenzene behaveslike a

double-refracting crystal in which the reftactive index
of the extraordinary ray, n, is greater than that of the
ordinary wave, n,. The phenomenon, known as the Kerr
effect, can be observed via two crossed Nicol prisms.
Does the observed pattern change if the direction of the
electric field is reversed?

8.35. When a source of light moves toward the observer,
the optical Doppler effect manifests itself. The curves in
the figure depict the dependence of the perceptible fre-
quency of the light on the speed of the source of light,
with one curve corresponding to the results predicted by
classical theory and the other. to the results predicted by
the theory of relativity. The ratio of the speed of the source
to the speed of light is laid off on the horizontal axis,
while the ratio of the perceptible frequency to the fre-
quency of the light emitted by the source (i.e. of a fixed
source) is laid off on the vertical axis. Which curve cor-
responds to which theory?

8.36. To determine the directional velocity of the ions
that move in an electric field in a plasma, one commonly
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measures the wavelength of the waves emitted by the ex-
cited ions. The measurements are carried out in two direc-
tions, counter to the direction of motion of the ions and
“in pursuit” of the ions. The measured wavelengths are
A, and A,, respectively. Can we employ the classical for-
mulas of the Doppler effect or must we use the relativis-
tic formulas? The ion velocities range from 10¢ to
10° m/s.

8.37. The figure depicts the same spectral line emitted
by a gas at different temperatures. The wavelength is
laid off on the horizontal axis, while the ratio of the inten-
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sity at a given wavelength to the maximal intensity at a
given temperature is laid off on the vertical axis. Which
curve corresponds to a higher temperature?

8.38. An electric current flows through a rarefied gas in
a tube 7 (Figure (a)). The radiation emitted by the excit-
ed positive ions is analyzed in the transverse direction
by a spectrograph 2. The wavelength distribution of the
intensity of the radiation for one spectral line isshownin
Figure (b). Can analyzing this distribution yield the tem-
perature of the ions?

8.39. Two objects having the same shape and size but
different absorption coefficients (immisivities) are heat-
ed to the same temperature and placed in a vacuum.
As a result of emission of radiation the objects cool ofi.
The curves in the figure show the change in temperature
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in the process of cooling. The cooling-off time from the
moment the objects were placed in the vacuum is laid off
on the horizontal axis, while the temperature of the ob-
jectsis laid offon the vertical axis. Which curve character-
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(b)
Fig. 8.38 Fig. 8.39

izes the object with a higher absorption coefficient and
which, with a lower absorption coefficient?

8.40. An ideal gas is placed inside a closed isolated vol-
ume. The concentration of the molecules of the gas is
n. At what temperature will the volume density of the
kinetic energy of translational molecular motion in the
gas be equal to the volume density of the energy of black-
body (electromagnetic) radiation? Illustrate the result
with numerical examples.

8.41. Two separate segments of equal area are isolated
in the energy distribution of blackbody radiation. Are
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the emissive powers over the respective wavelength in-
tervals the same? What about the number of emitted pho-

tons in each segment?
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8.42. A student has sketched the curves representing the
energy distribution in the emission spectrum of black-
body radiation for two temperatures as shownin the figure.
What mistake did the student make?

8.43. Determine the volume density of the energy of
blackbody radiation over the frequency range from v,
to v,. The radiation function is laid off on the vertical
axis.

8.44. The figure shows two curves: one corresponding to
the energy distribution of blackbody radiation at a cer-
tain temperature obtained from theoretical "assumptions
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(curve 1), and the other corresponding to the energy dis-
iribution of the radiation emitted by a certain object
that has been heated to the same temperature (curve 2).
Why can we be sure that the experimental curve does not
give a true picture?

8.45. Curve I in the figure depicts the energy distribu-
tion in the emission spectrum of a black body. Curve 2
represents, in schematic form, the energy distribution in
the emission spectrum of a certain object that has been
heated to the same temperature as the black body. Curve
2 consists of three segments: on the segments ranging
from A = 0 to A, and from A, to A = oo all ordinates of
curve 2 are one-half the respective ordinates of curve I,
while on the segment from A, to A, the value of e, re-
mains constant. Sketch the distribution of the absorption
coefficient (immisivity) over the wavelengths for the ob-
ject in question.

8.46. The radiation emitted by a black body can be re-
presented either by the energy distribution over the wave-
lengths (Figure (a)) or by the energy distribution over the
frequencies (Figure (b)). In the first case the wavelength
at which the black body emits a maximum amount of ra-
diation is A,,, while in the second the frequency at which
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the black body emits maximum amount of radiation is
vm- Is it true that at a fixed temperature the quantities
A and vy, are related through the formula vy = ¢/Ay,?
8.47. Represent the volume density of the energy of
blackbody radiation in the form of a distribution function
for the number of quanta in the energy of one quantum.
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8.48. How does the volume specific heat capacity of
the vacuum depend on temperature?

8.49. According to the electromagnetic theory of light,
the light incident on a surface always exerts a pressure
on that surface equal to

p=L(1+R), (8.49.1)

where I is the intensity of the light, that is, the light
energy arriving every second at a unit area of the surface,
and R is the reflection coefficient. Can the origin of this
pressure be explained in the same manner as is done in
the kinetic theory of gases, where the pressure of a gas on
the wall of a vessel is interpreted as transfer of momentum
from each particle to the wall?

8.50. Are there any practical means by which one can
obtain a beam of parallel rays of light in the mathematic-
al sense (using the terminology of wave optics, a stream
of strictly plane waves)?
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8.51. The energy distribution function for photoelectrons
has the form shown in the figure. What determines the
maximal energy of the photoelectrons?

8.52. In the Lukirskii-Prilezhaev experiments (also con-
ducted independently by R. A. Millikan), the dependence
of the stopping potential Ug,p, that is, the potential
needed to stop the photocurrent in a photocell and the as-
sociated electric circuit, on the frequency of the light in-
cident on the surface of the photocell is depicted by straight
lines. How to find the Planck constant knowing the

Ustop
/
/
Vi L R
0 VACRYA™ v
/7
/
o
/
V
Fig. 8.52 Fig. 8.53

slope of these straight lines? In what respect do the para-
meters that characterize these two straight lines differ?
8.53. Two electrodes placed in a vacuum at a certain dis-
tance from each other are connected electrically by a re-
sistor. One electrode is illuminated with light from a
source whose spectrum contains radiation with a wave-
length A that satisfies the condition

he/h > p,

where p is the work function of electrons leaving Lhe me-
tal of the illuminated electrode. Will there be any current
in this circuit?

8.54. A photocathode can be illuminated by the light
from two sources, each of which emits monochromatic ra-
diation. The sources are positioned at equal distances
from the photocathode. The dependence of the photocur-
rent on the voltage between the cathode and the anode is
depicted by curve I for one source and by curve 2 for the
other. In what respect do these sources differ?
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8.55. Two photocathodes are illuminated by the light
emitted by a single source. The dependence of the photo-
current on the voltage between the cathode and the anode
is depicted by curve I for one cathode and by curve 2

I f
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Fig, 8.54 Fig. 8.55

for the other? What photocathode has a higher work func-
tion?

8.56. The stopping potential applied between a photocath-
ode and the respective anode is such that the fastest
photoelectrons can fly only one-half of the distance be-
tween the cathode and the anode. Will the electrons be able
to reach the anode if the distance between the cathode and
the anode is reduced by half but the voltage is kept con-
stant?

8.57. In one case of Compton scattering a photon flies at
an angle 0 to the initial direction of the incident photons,

Yy

Fig. 8.57

and in other case it flies at an angle 6,. In which case is
the wavelength of the radiation after scattering greater,
and in which case does the electron participating in the
interaction receive a greater portion of energy?

9. Atomic and Nuclear Physics

9.1. A proton that has flown over a great distance hits
a proton that is at rest. The impact parameter is zero,
that is, the velocity of the incident proton is directed
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along the straight line connecting the centers of the pro-
tons. The mass of the proton is known, m, and the ini-
tial velocity of the incident proton is v, How close will
the incidence proton get to the fixed proton?

e C S

Fig. 9.1

9.2. Suppose that the energy required to ionize a hydro-
gen atom is W,. Must the electron, the hydrogen ion, and
the helium ion have the same initial kinetic energies
_ for the hydrogen atom to be-
s  come ionized?
5 9.3. The system of quantum
levels of an atom is assumed
to be like the one depicted
in the figure. How will each
of the energy components of
the electron (the kinetic ener-
gy and the potential energy)
vary if the electron moves from a
n=t lower level to a higher level?
Fig. 9.3 9.4. The quantum levels of
atoms of hydrogen and deu-
terium are only approximately the same (the difference
between the two systems of levels is exaggerated in the
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figure). Which system of levels belongs to which atom?
What is the reason for this discrepancy?
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9.5. Every other spectral line in one of the spectral se-
ries of an ionized helium atom (the Pickering series)
closely resembles a line in the Balmer series for hydrogen.
What is the principal quantum number of the level to
which the electrons transfer when these lines are emitted?
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Fig. 9.5

Why don’t the lines coincide exactly? What is the mean-
ing of the lines that lie in between the lines of the Bal-
mer series?

9.6. Four lines in the Balmer series lie in the visible
part of the spectrum. What must the principal quantum
number of the electron level in a doubly ionized lithium
atom be for the lines emitted when electrons go over to
this level to lie close to the lines of the Balmer series?
What is the overall number of lines lying in this wave-
length region?

9.7. An electron moving in an atom is acted upon by the
Coulomb force of attraction generated by the nucleus.
Can an external electric field be created that is capable of
neutralizing the Coulomb force and ionizing, say, a hy-
drogen atom? Field strengths that can be created by
modern devices are about 107 to 10® V/m.

9.8. In a He-Ne laser, the helium aloms are excited from
the ground state to two sublevels, 21S and 23S, interact
with Ne atoms, and give off their energy to Ne atoms,
with the result that the latter are transferred to the 3S
and 25 levels. The Ne atoms in these states emit radia-
tion and go over to the 2P level. In the figure, the 3S
and 28 levels, each consisting of four sublevels, and the
2P level, which consists of ten sublevels, are depicted by
broad black bands. In addition to the above-mentioned
transitions, a transition from the 3S state to the 3P
level is possible, but we do not show this transition in
the figure. From the 2P state, Ne atoms go over to the
1S state, and then gradually return to their ground state.
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Why don’t lie atoms emit radiation during transitions
from the 21S and 23S stales directly to the ground state?
What must be the relationship between the lifetimesof
He atoms in states 3§, 25, and 2P for continuous genera-
tion of radiation to be possible? It has been established
that of the two transitions, 3§ — 2P and 2S — 2P, one
is accompanied by radiation in the visible spectrum and
the other, in the IR spectrum. Which transition corre-
sponds to which spectrum?

9.9. The angular momentum of electrons in an atom and
ts spatial orientations can be depicted schematically by

2's 3>

Ps }

He Ne
Fig. 9.8

a vector diagram where the length of the vector is pro-
portional to the absolute value of the orbital angular
momentum of an electron. What vectors in the diagram
correspond to the minimal value of the principal quantum
number n and what are the values of the quantum num-
bers I and m?

9.10. In the Stern-Gerlach experiment, which was con-
ducted with the aim of discovering the spatial quantiza-
tion of an atomic magnetic moment, a beam of silver atoms
is sent through a nonuniform magnetic field generated by
magnets whose configuration is shown in the figure. Why
does the experiment require a nonuniform field?

9.41. The intensity distribution of X-ray radiation over
wavelengths consists of a continuous spectrum, which is
limited from the short-wave side by a limit wavelength
Am, and a characteristic spectrum, which consists of sep-
arate peaks. In the figure (with an arbitrary scale) we
depict such a distribution for a voltage U, applied to the
X-ray tube. How will the distribution change if the vol-
tage is decreased three-fold, that is, U, = (1/3) U,?
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9.12. An electron is inside a potential well with vertical
walls. The electronic wave function is depicted in the
figure. Is the depth of the well finite or infinite?

1
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9.13. An electron isin motion in a potential well of infi-
nite depth. Depending on the electron kinetic energy, the
electronic wave function has different configurations de-
picted in the figure. Which of these states is retained when
the width of the potential well is decreased two-fold?
By what factor will the minimal kinetic energy of the
clectron change in the process?

9.14. From the viewpoint of the optical analogy of the
wave properties of an electron, the regions of space where
it possesses different potential energies may be interpret-
ed as regions with different refractive indices. In the
figure two such regions are depicted, the regions are sepa-
rated by a boundary where the potential energy P expe-
riences a jump. In which of these regions is the refractive
index greater? In which of the two cases, when the elec-
tron moves from left to right or when it moves from
right to left, will the phase of the wave function be re-
tained under reflection of the clectron from the barrier,
and in which will it change to its opposite?

9.15. An electron moving from left to right meets an ob-
stacle, which in one case is a step (Figure (a)), and in the
other a barrier (Figure (b)). What are the probabilities
of the electron overcoming the step and the barrier ac-
cording to the classical theory and the quantum theory in
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two separate cases, namely, when the electron kinetic
energy E is lower than P and when it is higher than P?
9.16. An clectron moving from left to right passes through
three regions: I, I, and III. Its kinetic energy in re-

i
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Fig. 9.13

gions I and III is the same, E. Assuming the poten-
tial energy in these two regions to be zero, find the rela-
tionship between the kinetic energy £ and the potential

—
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Fig. 9.14 Fig. 9.15

energy P in region II if the electronic wave function has
the configuration depicted in the figure.

9.17. According to classical kinetic theory, absolute ze-
ro is the temperature at which molecular motion ceases.

114

AN



In relation to a solid body, this means that the thermal
oscillatory motion of atoms or molecules forming the
crystal lattice also ceases. Is the same conclusion valid
from the standpoint of quantum mechanics?

W, I

Fig. 9.16

9.18. In an experiment set up Lo study the diffraction of
electrons, a beam of electrons whose energy can be varied
by varying a potential difference is directed to a surface
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of a single crystal at an angle 6. The diffracted (scattered)
beam is analyzed by a detector positioned at the same an-
gle 8 (Figure (a)). In the experiment, the current of the
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Scattered electrons was measured as a function of the ap-
plied potential difference used to accelerate the electrons.
The results were plotted on a diagram, with the square
root of the accelerating voltage laid off on the horizontal
axis and the electron current, along the vertical axis. The
curve consists of a number of alternating maxima and
minima. As Figure (b) shows, the distance between the
maxima at first is not the samne, and the greater the vol-
tage, the smaller the discrepancy. Explain the pattern
of maxima and minima.

9.19. The number of protons and the number of neutrons
in the nuclei of stable isotopes are laid off on the horizon-
tal and vertical axes, respectively. Why does the fraction
of neutrons in the overall number of nucleons increase
with the mass number of the nuclei?

9.20. How many nucleons can there be in a nucleus on
the lowest quantum level?

9.21. A counter registers the rate of radioactive decay,
that is, the number of radioactive decay acts taking place

logy
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every second. The results obtained in such measure-
ments are plotted in the form of a diagram in which the
time interval from the beginning of counting is laid off
on the horizontal axis and the logarithm of the decay
rate, on the vertical axis. How to find the half-life of the
radioactive element from such a diagram?

9.22. In the Periodic Table, we select three consecutive
elements, say, a, b, and c. A radioactive isotope of ele-
ment a whose proton and mass numbers are placed at the
symbol of the element transforms into element b, which
in turn transforms into element ¢. This last element trans-
forms into an isotope of the initial element a. What pro-
cesses cause the transformations a —b, b —-¢, and
¢ —a? What are the proton and mass numbers of the nu-
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clei of elements b and ¢ and those of the nucleus of ele-
ment a after the final transformation is completed?
9.23. A number N, of atoms of a radioactive element are
placed inside a closed volume. The radioactive decay
constant for the nuclei of this element is A,. The daughter
nuclei that form as a result of the decay process are as-
sumed to beradioactive, too, with a radioactive decay con-
stant A,. Determine the time variation of the number of
such nuclei. Consider two limiting cases: A,> A, and
A <A,

9.24. The track of a beta particle (an electron) in a
Wilson chamber has the shape of a limacon (a spiral).
Where does the track begin and where does it end? How
is the magnetic field that forces the beta particle to move
in this manner directed?

9.25. In beta decay, the velocity of the nucleus that emits
an electron is not directed along the line along which the
electron velocity is directed. How can this phenomenon
be explained?

9.26. The track of a proton in a Wilson chamber has a
“knee”, where the proton changes its trajectory by 45°.
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Momentum and energy conservation implies that the
proton has collided with a neutron. Which of the two par-
ticles has a higher energy if the neutron is considered to
be initially at rest and free?

9.27. The track of an alpha particle in a Wilson chamber
filled with a gas has a “knee”, where the particle changes
its direction of flight by an angle greater than 90°. Start-
ing with what gas in the Periodic Table'lis such a track
possible?

9.28. Two radioactive ions are emitted by an accelera-
tor in the same direction with the same velocity v whose
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absolute value is close to the speed of light. Following Lhis
event, the nuclei of the ions emit electrons (each nucleus
emits one electron). The velocity of one electron coin-
cides in direction with v while the velocity of the other
electron is in opposition to v. With respect to the nuclei the
electron velocities (their absolute values, that is) are the

Accelerator |- — _@_V:.ol_‘ve_o_ __@..XL_._
Fig, 9.28

same, v. Find the electron velocities with respect to the
(fixed) accelerator and the velocity of one electron with
respect to the other.

9.29. Within the framework of the “classical” Bohr the-
ory, an excited atom is an atomn one electron of which
moves along an orbit that is farther from the nucleus
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Fig. 9.29 Fig. 9.30

than in the ground state (Figure (a)). When the atom
goes over to its ground state (Figure (b)), the atom emits a
photon. In the literature, especially popular-science lit-
erature, the common way to describe this process is to say
that mass has transformed into energy. Is this actually
the case?

9.30. Two charged particles acquire equal energy when
moving in an accelerator. The dependence of the mass of
each particle on the energy acquired is depicted by curves
I and 2 in the figure. Which of the two particles hasa
greater rest mass?

9.31. The principle of operation of a linear accelerator
is illustrated in the figure accompanying the problem. A
charged particle is emitted by a source and is accelerated
by a potential difference U between source S and cylin-
der 1. During the time it takes the particle to fly through
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cylinder 7, the potential difference between 7 and the
next cylinder, 2, changes its sign and, leaving cylinder
2, the particle again finds itself in an accelerating field
with the same potential difference U. The length of cylin-
der 2 is selected such that when the particle leaves this
cylinder, the field will again change sign, so that the
particle is accelerated anew, and so on. If the particle has

1 2 L N-1 N }
l'? L [ 1 1

Fig. 9.31

passed N gaps between the cylinders, the energy it acquires
is W = eUN (it is assumed that the particle is singly
charged). Since as the particle is accelerated the path it
traverses in the course of a single change in polarity be-
tween the cylinders increases, each subsequent cylinder
must be longer than the previous one. However, at a cer-
tain high energy the size of cylinders ceases to grow.
What delermines the maximal length of a cylinder if the
frequency of variation of the voltage between the cylin-
ders is v?

9.32. Why cyclotrons are not employed to accelerate elec-
trons? What gencrated a need for building more complex
accelerators such as the synchrocyclotron “and {the syn-
chrophasotron?

Fe’’ o °
Detector 8

Detector

Fig. 9.33 Fig. 9.34

9.33. Two samples of radioactive iron 5"Fe emit gamma-
ray quanta. One sample is placed at an altitude H above
sea level and the appropriate detector at sea level, while
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the second sample is placed at sea level and the appropri-
ale detector at altitude H. Which of the two detected
quanta has a higher frequency?

9.34. In observing Cerenkov radiation it was found that
light propagates at an angle 6 to the direction of electron
motion. Find the refractive index of the substance in
which the radiation is excited.



Answers and Solutions

1. Fundamentals of Mechanics

1.1. If AB = AC = I, then the times of flight from A
to B and from B to A are, respectively, I/(c — v) and
l/(c 4+ v). The entire flight time is

l ! 2le
b=t cFv  a—n°
For the second airplane to fly from A to C, its velocity
must be directed at an angle to the direction of the wind

Fig. 1.1

in such a manner that the resulting velocity directed to-
ward C is equal to (¢ — v*)!? in magnitude. The entire
flight time of this airplane will be

2
LV e R

t

The second airplane will arrive before the first, and the
flight time ratio is

t,/t, =V 1—v?/ct.
1.2. The figure shows that

wztana_}_ u

tan 0= - .
Vg COS O Up COS &

Velocity v can be found from the equation
(vo sin @ + u)? + v} cos? a = v?,
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which yields
2
v:vol/i-{-Z%sina—{— (—:}:—) .

The boat will travel directly across the river if 6 = 0.
Under this condition, sin o = —u/v,. Obviously, the
boat can travel at right angles to the current only if v,
is greater than u.

1.3. The time of travel by boat from A to C is

ty= Vm/vi-
The time of travel by foot from C to B is
b=V @D/
The total time of travel is

Vz:+a2 © Vid—2? 02 .

1 Ve

t=fytt,=

The extremum condition is di/dx = 0, or
_di: z . d—z
dz v V2 tat Ve l/m

Since
T . d—zx .
——=———-=sina; and ——————=sina,,
Vata Vid—ap+02
we can write sin «,/v, = sin a,/v,, whence
sina;  »
sina, vy °

We can easily see that the extremum corresponds to the
minimum of time of travel.
1.4. The time of travel along straight line BC is deter-

mined by the length S of segment BC and the acceleration
w. The figure shows that

V@12 _ h
S=Va+h, w= VA g.

Since S = wt*/2, we can write

21 5 & h
Va:4 h2= 2 Vara 2,

2@k
b= 1/; —r

whence
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Nullifying the derivative (the extremum condition),

dt h?—a?

[

yields & = a.
The same result is oblained if we express § and w in
terms of a:

S = alcos ¢, w = gsin a,
f— /2 a
'_V g sina-cosa *

Nullifying the derivative dt/da, we find that o = 45°.
1.5. The acceleration in rectilinear motion is the second
derivative of the distance traveled with respect to time.
For a concave curve the second derivative is positive, while
for a convex curve the second derivative is negative,
whereby curve (a) corresponds to decelerated motion and
curve (b) to accelerated motion.

1.6. By definition, acceleration is the time derivative of
velocity, w = dv/d¢. For rectilinear motion the vector
equation can be written in scalar form. The acceleration
is the highest when the derivative is the greatest, that is,
when the curvature of the curve is maximal. The curva-
ture is determined by the slope of the tangent line to the
particular point on the curve. This corresponds to mo-
ment 2 on the time axis. Note that for curvilinear motion
the question contains an ambiguity, since to determine
the acceleration we must know the radius of the trajectory
at every moment in the course of the motion in addition
to the magnitude of the velocity. To find the average veloc-
ity, we must know the distance traveled by the particle
in the course of a definite time interval. In terms of the
velocity vs. time graph, the distance traveled is the area
of the figure bounded by the curve, the time axis, and
the vertical straight lines passing through the initial and
final moments of time on the time axis. Analytically the
distance is calculated via the integral

ty
S= S vdt,
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whence the average velocity is
1y
S vde
V=4
1.7. In terms of the velocity vs. time graph, the distance
traveled is determined by the area bounded by the curve

X and the time axis. This

T area is
S= —I[I—vmt.
Xm . . .
The average velocity is
_sS_T,
v=7T g tme

t Such motion cannot be re-
Fig. 1.8 alized in practical terms
since at the initial and final
moments of the motion the acceleration, which is dv/dt,
is infinitely large in absolute value.
1.8. The particle will never get to point B but will ap-
proach it without bound. Indeed, from the equation
UV ="vy, —ar we get
dz_ _ gt.
Vo— az

Integration of this expression yields

In ( Vol ) = —at,

— /e

whence
z=2(1—e). (1.8.1)

The limit value z, = v,/a can be attained only at
t — co. The dependence of z on ¢ defined by Eq. (1.8.1)
is represented by the curve shown in the figure.

1.9. The acceleration

W=—=— — =k (v, k)

increases with x. The same result can be obtained from
the following line of reasoning: at constant acceleration
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the relationship between the velocity and the distance
traveled is given by the formula

2 . 152
v = u; + 2wz,

so that the velocity increases in proportion to the square
root of the distance. Hence, for the velocity to increase
linearly with z, the acceleration must increase.

1.10. The train covers the distance dz in the course of
dt = dz/v (z), where v (z) is the speed with which it
travels over dz. The total time of motion is

The average speed is determined by dividing the distance
covered by the train by the entire time of motion:

S

@ d
4
§v(z)

If the graph cannot be represented by a formula, it can
be reconstructed into the 1/v vs. z graph. In this case the
integral in the denominator of the expression for v,y
can be evaluated by graphical means.

1.11. The speed with which the lower end of the rod
moves, v, = dz/df, can be written in the form

dy dz

v——_—

T dt dy

Since z = Y12 — y? we can write

Vay

4= ¥y
dy ~ ~ yi—g '
whence
Vi = — Yy ﬂ-*_— ylvyl
® Vie=4 dt Vie—g2'

Thus, the speed of the lower end gets smaller and smaller

and vanishes at y = 0. _
1.12. Since the drag is proportional to the velocity of the
object, so is the acceleration caused by this force (with a
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minus sign). Hence, by Newton’s second law,

dv
'd—t--_‘- —g—rv,

where r is the proportionality factor. Whence
v

t
. S%ﬁr_rgdt'

Yo

<

Integration yields*

(£ o=t

I - (1.12.1)
”/r[ "\ For v = 0 this yields

tm= In (1+’gﬂ) .
(1.12.2)

To find the maximal altitude, we rewrite (1.12.1) in the
form

Fig. 1.12

d r
_dtﬁz(uo+§)e-‘—§- (1.12.3)

Integrating this equation up to ¢, we find that
1 .
h=(v+ &) T—emy—£1.  (1.12.4)

Bearing in mind that at the point of greatest ascent v =
dh/dt =0 and combining this result with (1.12.3),
we get

(v0+5) e "m=E (1.12.5)

r r
Combining (1.12.4) with (1.12.5) yields

h— Yo—8m
reap

Substituting #, from (1.12.2), we arrive at the final re-

sult
Y )
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When drag is extremely low, or rv,/g < 1, we can employ
the expansion

In(t42) m e 1 (),

g g 2\ g

This results in the well-known formula
b2
=g

* The section of the curve that lies below the t axis (see the
figure) corresponds to the descent of the object after the
object has reached the maximal altitude. The rate of descent
asymptotically approaches the value at which the force of
gravity is balanced by the drag.

1.13. The acceleration vector can be decomposed into
two components, the tangential acceleration w;, which is
directed along the same straight line as the velocity of
the particle, and the normal acceleration w,, which is
perpendicular to the velocity. For instance, for 6 > 90°
(see Figure (a) accompanying the problem) the tangential
acceleration is directed opposite to the particle’s velocity
and the motion in this case is decelerated, w << 0. The
presence of a nonzero normal acceleration suggests that
the motion is curvilinear. The situation for the other
cases is as follows: for 6 << 90° (Figure (b)) the motion is
curvilinear and accelerated, for 8 = 90° (Figure (c)) the
motion is curvilinear and uniform, and for 0 = 180°
(Figure (d)) the motion is rectilinear and decelerated,
w << 0. Of course, characterizing the motion by the angle
between the velocity v and the acceleration w is meaning-
ful only for a definite moment in time. Subsequent mo-
tion may change this characteristic.

1.14. The normal acceleration is

wy, = v¥/R = o’R,

whence the linear velocity grows in proportion to the
square root of the curvature radius of the spiral, while
the angular velocity decreases by the same law.

1.15. When the angle between the total acceleration and
the radius becomes equal to 45°, the normal acceleration
becomes equal to the tangential acceleration. Since
w, = o*R and w; = eR, we have ®® = ¢, and since
® = et, we have €22 = g, with the result that

e = 1/t
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1.16. The acceleration with which the object moves is
the acceleration of gravity, which at all points of the
trajectory is directed vertically downward. From the
figure that accompanies the problem we see that as the
object ascends the tangential acceleration decreases while
the normal acceleration grows. At the highest possible
point the tangential acceleration is zero while the normal
acceleration is equal to the acceleration of gravity.
1.17. Since at point A the sled’s velocity is zero, so is the
normal acceleration w, = v?/R. The tangential accelera-
tion is directed down the
hill along the tangent to
the surface of the hill.
The figure accompanying
the answer shows the forces
that act on the sled. These
are the force of gravity mg
and the reaction force N
exerted by the surface of
the hill. The resultant F
is directed downward along
the hill.  According to
Newton's second law, the
acceleration vector points in the same direction as the
resultant. If there is friction, the resultant vector does
not change direction but becomes somewhat shorter,
with the result that the tangential acceleration becoines
smaller, too.

1.18. The acceleration vector points in the direction of
the resultant of the forces acting on the object. At the
lowest possible point only the force of gravity and the re-
action force act on the body, provided that there is no
friction. This means that at this point the object experi-
ences no tangential acceleration. Since the object is mov-
ing along a curvilinear trajectory with a certain veloci-
ty, there is a normal acceleration, which is directed to-
ward the center of curvature of the trajectory. This acce-
leration is generated by the difference between the reac-
tion force exerted by the surface and the force of gravi-
ty.

1.19. In the course of time At the angular velocity vector
will vary from @, to @, without changing its length. The
direction of the vector will change by an angle of Ag.
This angle is equal, on the one hand, to | Ae |/® and,

Fig.§1.17

128



on the other, to AS/R, where AS stands for the displace-
ment of the center of the wheel.* This displacement is
equal to QRAt, where Q is the angular velocity of the
cenler of the wheel. Thus,

| Ao |/wo=QRAt/R and &= lim Lo _ 6.
At~ At

When the wheel is rotating, the point at which it touches
the arena will shift in the course of Al by a distance of
roAt on the wheel and by
RQAt on the arena. Hence, o
and Q arc linked by the fol-
lowing formula: or = QR,
whence

_ 2 T
E=0 5.
* It is assumed that A9 < 1 rad.

1.20. The height of the cen-
ter of mass of the vessel with
the liquid is delermined by
the formula

M (H/2)4-m (r/2 Fig. 1.19
h(,:_-%, (1.20.1)

where m is the mass of the liquid. We rewrite (1.20.1)
by replacing the mass of the liquid with 8z:
1 MU 82
he=~ N ER TR (1.20.2)
Nullifying the derivative of k with respect to z,
dhe 1 20z (M - 82) — 6 (M H +- §22) _

dr ~ 2 (M 62)2 =0,
we get
o ME . MH M .
X2 == i 6—2+T—T‘ (1.20.3)

Of course, only the positive value of the root has physi-
cal meaning. Substituting this value into (1.20.2), we
will find the position of the center of mass. After elemen-
tary transformations we get

M2 | M M
he=) 5 +F — %
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We have found that the posilion of the center of mass co-
incides with the level of the liquid.

Here are some particular cases:

(1) 8H = M (the liquid lilling the vessel completely
has a mass equal to the mass of the vessel). Then

he=xz=H()2—1) ~ 0.414.

(2) 8l < M. Let us transform (1.20.3) to the form
M

e (V 15 —1).

The fraction in the radicand is considerably less than uni-
ty. Expanding (1 -|- 8H/M)'? in a series and retaining
only three terms, we get

e (1 ),
or
hczxz%(i——g%)

The level of the liquid is below the middle of the vessel
by an insignificant distance.
(3) 8H> M. Let us transform (1.20.3) to the form
M
(1/ SHT T SH 6H Wi‘) '
Bearing in mind that (M/8H)Y2> M/0H, we can assume

that the expression inside the parentheses in the above
formula is simply (M/6H)Y?, whence

he = x ~ H (M/SH) 2.

The level of the liquid is above the bottom of the vessel
by an insignificant distance.’

1.21. For the object to be in a state of equilibrium in re-
lation to the wall of the funnel the resultant of the forces
acting on the object must impart an acceleration to the
object together with the funnel. These forces are the force
of gravity and the reaction force exerted by the funnel.
Since the force of gravity is constant in this problem and
the resultant must be directed horizontally, the direction
and magnitude of the reaction force are determined uni-
quely. But the latter has a different value at different
distances from the funnel axis. At a constant angular ve-

130

~



locity of the funnel, the greater the radius of rotation the
greater the reaction force. For this reason (see the figure
accompanying the answer), as the object moves farther
from the funnel axis, the resultant of the force of gravity
and the reaction force acquires a component directed up-
ward, while as the object moves closer Lo the axis, the re-
sultant acquires a component directed downward. In

Fg. 1.2 Fig. 1.22

the first case the object tends to move away from the axis
still further and rises, while in the seccond case il tends to
move Ltoward the axis and lowers. Thus, the state of equi-
librium is unstable.

1.22. It is convenient to think of the vessel with water
as a noninertial system. In this case, on each particle of
water there acts, in addition to the force of gravity, a
force of inertia equal to the product of the particle’s mass
by the acceleration taken with the minus sign. The sur-
face of water is a plane perpendicular to the vector of the
resultant of these two forces. The slope of this surface in
relation to the horizontal plane is

tan o = wlg.

1.23. Just like in the answer to the previous problem,
we can assume the vessel with the liquid to be a noniner-
tial system, in which a force of inertia equal to —mw =
—m?z acls on every particle of mass m. The resul-
tant of Lhis force and the force of gravity is perpendicular
to the surface of the liquid. The derivative dy/dx, equal
to the slope of the line tangent to the surface at a given
point, is

ﬂ:tana= maw? .

dz mg
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integratring, we find that

2
_ 0% 2

y"ng

The surface of the liquid is shaped in the form of a parabo-
loid of revolution.

1.24. Just like in the answers to Problems 1.22 and 1.23,
the vessel can be assumed to be a noninertial system. In
such a system, every mass clement of water, say, an ele-
ment whose volume is equal to the volume of the piece of
cork, is in a state of equilibrium due to three forces:

g\)w

Fig. 1.23

the force of pressure of the surrounding water, the force
of gravity, and the force of inertia, which is equal to the
product of the element’s mass by the normal acceleration
of that element taken with the minus sign (Figure (a)).
There are also three forces acting on the piece of cork that
replaces the element of water: the force of pressure of the
surrounding water is the same but the forces of gravity
and inertia are lower. As Figure (b) shows, the net force
(the difference between Lhe force of pressure and the
forces of gravity and inerlia) make Lhe cork rise to Lhe
surface and, at the same time, move toward the axis of
the vessel.

A similar line of reasoning forces us to conclude that
an object with a density greater Lhan the density of waler,
when immersed inlo a rotaling vessel with water, will
sink and, in the process, move Loward the wall of the ves-
sel.
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1.25. According to Newlon's second law,
t
5 F dt —Amv.
0

In the case at hand,
t

S Ft=Fot/2,
0
whence
v = Ft/2m.

1.26. The work performed along ac’ is
A, = ac’ mgk.

The work performed against the forces of friction on the
inclined segment ac is

’
A, = acmgkcosa = -~ mgk cosa = ac’'mgk.
2 g cos a g g

We see that the Lwo quantilies coincide, and so, obvious-
ly, do the similar quantities for ¢'d and cb. The change in
the potential energy about ac’d and acb is zero. Thus, the
work performed against the forces of friction along
ac’b and that performed against the forces of friciion
along acb coincide.

1.27. The initial polential energy of the object with res-
pect Lo the bottom of the hill, mgh, has been used up for
work against the force of friction. In returning the body
to its initial position, the force performs the same work
and, in addition, imparts to the object the initial poten-
tial energy. As a result, the total work will be 2mgh.
1.28. The work performed on an elementary segment of
displacement is equal to the decrease in potential energy:

d4 = —dW.

The same work can he represented as the product of force
by displacement:

d4 = F da.
Hence

Fx: -——(Fz—-Zax.
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Forces known as quasiclastic also obey this law.

1.29. When the object is immersed in the liquid, two
forces act on it: the force of gravily and Archimedes’
force. If V is the volume of the object, the resultant of
these two forces is

r=v (Pob - pliq)g-

For pop > p1yq» @s the object is immersed in the liquid,
its potential cnergy continues to fall below zero, but slow-
er than it would in air. The rate of this decrease is the
higher the greater the value of pgy. Straight line 7 in the
figure accompanying the problem corresponds to an object
sinking in a liquid. When pg, = py;q, the potential encr-
gy remains constant (straight line 2 coinciding with the
z axis). If pgp << p1yq> the potential encrgy of the object
begins to increase when the object sinks into the liquid
(straight lines 3, 4, §), and the rate of this increase is the
higher the lower the value of p,,. The potential energy,
while growing, cannot exceed the initial potential energy
of the object in air (the dashed horizontal line), and the
object can attain this level only when the medium exerts
no drag on it. If this is the case, the object will sink to a
certain level in the liquid, stop, and then return to the
surface with the same speed at the surface as it had when
it entered the liquid. Once out of the liquid, the object
will rise 1o the height determined by the initial polential
energy. After this it drops back into the liquid, and so
on. Of course, under real conditions the drag exerted by
the medium will slow down the object, and the greater
the viscosity of the liquid the faster this happens.

If the densily of the material of the object is one-half
the density of the liquid, pgy == (1/2)py;q, then

I = Vpge.

In this case the difference between Archimedes’ force and
the force of gravity is equal (in absolute value) to the
latter but is directed in opposition to the force of gravity.
The slope of the straight line must be the same as that of
the straight line that represenls the variation of the po-
tential energy of a falling object. Straight line 4 has such
a slope.
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1.30. The formula that links the force acting on an object
with the potential energy of the object,
F, dw

=~

shows that equilibrium, which occurs when the force is
zero, sels in when dW/dr = 0. There are two such points
on the curve, point 2 and point 4. Since when the object
moves away from point 2 its potential energy increases
while when it moves away from point £ its potential ener-
gy decreases, at point 2 equilibrium is stable and at point
4 it is unstable. The fact that a system always tends to
a state in which its potential energy is minimal implies
that repulsive forces act on the 7-2 and 4-5 segments and
an attractive force acts on the 4-2 segment.

1.31. Momentum conservation for the given problem can
be written thus:

MUy = MUy - My, (1.31.1)

where m, is the bullet’s mass, m, the load’s mass, v,
the initial velocity of the bullet, u, the final velocity of
the bullet, and u, the velocity acquired by the load as a
result of the collision. From (1.31.1) it follows that

uzz”%_"‘). (1.31.2)
If the bullet fliecs through the load, after it has left the
load it has a velocity that is surely greater than u,.

We write u; = u, 4+ V. Substituting this expression into
(1.31.1), we get

my (vo—7V)
my—-my

Uy = (1.31.3)
If the bullel gets stuck in the load, then u, = u, and,
hence,

_ miVy
2= g (1.31.4)
Finally, if the bullet recoils from the load, the velocity it
acquires after collision, u,, is negative and (1.31.2) can
be writlen in the form

my (o | uy 1) (1.31'5)

Uy = ma
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A comparison of (1.31.3), (1.31.4), and (1.31.5) shows that
the load acquires the highest velocity (and the greatest de-
flection, as a result) when the bullet recoils from it, while
the lowest velocity is acquired when the bullet pierces
the load.

1.32. For the sake of convenience we employ a coordinale
system in which the velocily of one of the spheres prior
to collision is zero. According to the energy counservalion
law, in the case of an absolutely elastic collision we have

mlvﬁ o mlu% mgu%

2 2 T2 o0

where m, and m, are the masses of the spheres, v, is the
velocitiy of the first sphere prior to collision, and u,
. and u, are the velocities of
My the spheres after collision.
| \\ Since the masses of the spheres
8 : \ are the same, we can write
| A\ - o= u? - u?
T —> Mo 0o ™ 2*
'P: -7 The velocity vector v, is the
|

rd

P hypotenuse of a right triangle
-7 whose sides are the velocity
Mty vectors u; and u,, and hence
Fig. 1.33 the angle between u, and w,

is 90°.
1.33. Let u, and u, be the final velocilies of the impinging
sphere and the one that was at rest prior to collision, res-
pectively, and 0 is the angle between u, and v,. The equa-
tions that express the laws of conservation of energy and
momentum (for each projection) have the following form:

myy  mqui mou2
= 5t (1.33.1)
myvy = myu, cos 8 + myu, cos @, (1.33.2)
myu; sin 0 + myu, sin ¢ = 0. (1.33.3)

If m;, m,, and v, are fixed, then u,, u,, 0, and ¢ are
linked through three equations. For this reason two of the
four variables can be excluded and the variable 8 can be
expressed in terms of the third remaining variable, say,
u;. Taking m,u, cos 0 to the left-hand side of Eq. (1.33.2),
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squaring the result and Eq. (1.33.3), and adding the two
squares, we get

m} (U5 — 2ugu, cos 0 - ul) = miu;.
Replacing u, with its value oblained from (1.33.1) and

carrying out the necessary lransformations, we arrive at
a quadratic equation for u,, namely,

— M

u? ——2 vocosﬂxu,—l—m T, vi=0, (1.33.4)

whose solution has the form

cos 0 + m2 Y _sin?0 ve- (1.33.5)
(eos0 1/ (5 )

U= m1+
This equation shows (hat the maximal angle 0 is deler-
mined by the condition

sin 8, = my/m,. (1.33.6)

For values of 8 smaller than 0, two cases are possible,
since two distinct values of u, correspond to one value of
0. For example, for m;/m, = 3 and sin 8 = 0.2, the veloc-
ity u; may have two values, 0.93v, and 0.53v,. The first
collision is commonly known as soft, while the second is
commonly known as hard. The extreme case of soft col-
lision is the grazing collision (or even Lhe case where one
sphere misses the other), while the extreme case of hard
collision is the head-on collision, after which the ve-
locity of the impinging sphere becomes
my—mgy
Uy = Vo

Condition (1.33.6) can be obtained in another manner
as well. For instance, if we express cos 0 via (1.33.4),
namely,

1 uy
cos0=m(m,+mz) % (mi_mz)

and nullify the derivative of cos 6 with respect to u,,
we can find the minimal value of cos 6 or the maximal val-
ue of sin 8. The motion of the impinging sphere can also
be considered using the system of coordinates linked wilh
the center of mass of the two spheres. If in the laboratory
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system the coordinates of the spheres are z, and z,, then
the coordinale of the center of mass is

_ myZytmaTy
T mgtmy

while the velocity of the center of mass is

2

Vo= —21
¢ mytme 0

Correspondingly, the velocity of the impinging sphere in
this system prior to collision is

Ug = Uy — V¢ = Uy

As a result of the collision the veclor vy retains its
length but turns through a certain angle depending on the
distance between the center of the second sphere and

MyVo R myUo '“1-\70
‘ MYy
m, U,
m,U, m,G
myU;
11\261 /
(a) (b) ()
Fig. 1.33

the direction of flight of the immpinging sphere prior Lo col-
lision. The velocity wu; is equal to the sum of v, and v,.
The momentum vectors of both spheres are shown in the
figure for three cases: soft collision (Figure (a)) and hard
collision (Figure (b)) for m,/m, =3 and sin 6 —= 0.2
and the case with sin 0 = my/m,; -= 1/3 (Figure (c)).
The velocity of the impinging sphere after collision is
U= m—T_;_v—;’nz cos 0 = 0.707v,,

The above-discussed problem is important for the theo-

ry of atomic collisions. For instance, if a potassium ion
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impinges on a helium atom (m,/m, = 10), as aresultofan
elastic collision the ion may be deflected by an angle no
greater than 5.7°.
1.34. We will consider cach case in the order that it ap-
pears in the problem.

(1) The directions of the velocities of the spheres in the
laboratory system are shown in the figure accompanying

RN \

W

O /

()

(d)
Fig. 1.34

the problem. If at the moment of collision we project the
velocities of the spheres and the corresponding momenta
on two axes one of which coincides with the direction of
the initial velocity of sphere I and the other with that
of the initial velocity of sphere 2, then in the first of
these two directions the spheres exchange the respective
projections of the velocities, just like in a head-on elastic
collision. Sphere I stops in the process. Since in the colli-
sion the force acts along the straight line connecting the
centers of the spheres, the initial velocity of sphere 2
is conserved, with the velocily of sphere 7, which is per-
pendicular to the initial velocity of sphere 2, added to it.
As a result the velocity of sphere 2 becomes equal to the
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geometric sum of the initial velocities of both spheres,
that is, v}/ 2 (Figure (a)).

(2) To determine the velocities of the spheres in the cen-
ter-of-mass system, we decompose the velocity vector
of each sphere into two perpendicular and equal compo-
nents, Viq, U;p and V4, Upp. The components vy, and
Upq are equal in magnitude and point in the same direc-
tion. Obviously, the common center of mass moves in
the same direction and with the same velocily, v, with
respect to the laboratory system. Therefore, in the system
linked with the center of mass there are only the veloci-
ties v, and v,,. The velocities of the spheres after colli-
sion can be obtained if we subtract v, from the velocities
of the spheres in the laboratory system. The other veloc-
ities are shown in Figure (b).

(3) In the system linked with sphere I, the sphere, ob-
viously, remains at rest during the entire collision process.
The velocity of sphere 2 in this system can be obtained by
subtracting geometrically the initial velocity of sphere /
from the velocity of sphere 2 in the laboratory system.
Since the velocity of sphere I after collision is equal, in
the laboratory system, Lo zero and is also zero in the sys-
tem linked with sphere 7, the velocity of sphere 2 in
this system after collision is the same asin the laboratory
system (Figure (c)).

(4) In the system linked with sphere 2, the velocily
of sphere 7 is obtained by subtracling geometrically the
initial velocity of sphere 2 from the velocity of sphere 1.
After collision the velocity of sphere 7 is equal, in abso-
lute value, to the final velocity of sphere 2 in the labora-
tory system and points in the opposite direction (Figure
(d)).

In conclusion we would like to bring the reader’s atten-
tion to the fact that the angular momenta of the spheres
with respect to the center of mass remain constant during
the entire collision process. In collision, the center of
mass is the point where the spheres touch and the angular
momentum of sphere 7 is zero and remains such after
collision. The angular momentum of sphere 2 is equal,
prior to collision, to the product of momentum mv by
the arm R. After collision the momentum of sphere 2

becomes mv V2, but the arm is now R/} 2, so the product
is the same and the angular momentum is conserved. Of
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course, since the system consisting of the spheres is isolat-
ed, the angular momentum is conserved in the entire
process of motion.

1.35. After collision, sphere 2 acquires the velocity

— Zmu (1.35.1)

27 mytmy
Sphere 3 acquires the following velocity after collision:
_ 2mauy
8 my-t-mg*
Substituting the value of u, from (1.35.1), we get
— 4m1m2v1
T (mylomg) (my - my)

The extremal value of u; can be found by nullifying the
derivative of u; with respect to m,:

Us

du, 4dmyv, (mymg— m3)

d_mz T [(my-tmy) (mo-t-mg) ]2

From this it follows that

my = V myms.

We can easily see that this value corresponds to the
maximum of u,.

Here are some particular cases.

(1) my > m,. In this case

Uy —T g,
3Nm1+m2 t

If we also assume that m; > m,, then
ug ~ 4v,.

If sphere I were to hit sphere 3 directly (without the
intermediate sphere 2), the highest velocity of sphere 3
for m, > m, would be roughly 2v,.

In some fantastic projects of interplanetary flight it has
been suggested that the spaceship be accelerated to the
necessary speed through a series.of collisions with inter-
mediate objects whose masses must be calculated in the
appropriate manner.

(2) my; = my. In this case my= m; = my and uz; = v,.

(3) my <« my. Assuming that my > m;, we get

ug =~ 4v,m,/mg.
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Here the velocity of sphere 3 is approximater double the
velocity without an intermediate object, sphere 2.
1.36. The velocities of the spheres after collision are
. mp—nly _ 2my
1 .....m1+m2v0, uz_m1+mz

Vo-

Here are some particular cases.

(1) u; < 0if m; << m,. Since in this case 2m; << m; +
my, we have 0 << u, << v,.

(2) u, =0 if m; = m,. Then u, = v,.

3) uy >0 if my > m,. Then 2m; > m; + m, and
Uy < Uy < 20,.
1.37. The equations of motion for the loads and the
pulley can be written as follows:

mw =mg — Iy, mw = Ty — myg, Je = (T, — Ty)R,
(1.37.1)

where T, is the force exerted by the left end of the string
on the left load, T, the force exerted by the right end
of the string on the right load, J the moment of inertia
of the pulley, w the acceleration of the loads, and e is
angular acceleration of the pulley. Dividing (1.37.1)
by R, adding all the equations, and replacing & with
w/R, we arrive, after appropriate transformations, at
m,—my
W= R & (1.37.2)
Equation (1.37.2) shows that in exact calculations we
must allow for the moment of inertia and the radius of
the pulley.
If the pulley is a homogencous disk, then instead of J
we can write mpR%2, and Eq. (1.37.2) assumes the form

. my—my
Y T mamp2 6

We see that in this case the radius of the pulley plays no
role; what is important is only the mass of the pulley.
1.38. The equations of motion for the load-shaft or Lhe
load-sheave can be wrilten as follows:

mg — T =mw, TR = Jg,

where m is the mass of each load, T the force exerted by
the strings attached to the loads, R the radius of the
shaft or sheave, J the moment of inertia of the shaft or
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sheave, and & the angular acceleration of the shaft of
sheave. Eliminating T from the equations and replacing &
with w/R and the moment of inertia of the shaft or sheave
with A R?/2, we arrive, after simple transformations, al

. m
“mrae &

from which it follows that the accelerations with which
the two loads are lowered coincide. The angular accelera-
tion is the greater the larger the radius, which means that
the shaft has a greater angular acceleration than the sheave.
1.39. DPrior Lo switch-on, the sum of the angular momen-
ta of all the parts of the vacuum cleaner is zero. When
the motor is switched on, a torque appears in the rotor
of the motor, with the same torque (in absolute value)
appearing in the stator and the casing of the vacuum clean-
er fixed to the stator. Due to the latter torque, the vacuum
cleaner begins to turn, but this motion dies out very soon
because of friction.

1.40. When the engine of the helicopter ol this typeis
operaling, lwo torques appear: one is applied to the
main rotor and the other (equal in magnitude to the
first) is applied to the fuselage of the copter. This second
torque tends to turn the fuselage in the direction opposite
to that of the main rotor. The vertical tail rotor creates
a torque that cancels out the torque applied to the fuse-
lage. In toy helicopters this second rotor is fixed and the
helicopter rotates in flight in a direction opposite to that
of the main rotor.

1.41. The rod is in rotational motion, and so its poten-
tial energy is transformed into the kinetic energy of
rotation. If the mass of the rod is m and the length is [,
we have

w

mgl _ Jo?
2 T 2
Replacing  with v/l and J with mi¥/3, we get

v=) 3gl.

1.42. To determine the trajectories that the various
points of the rod describe, we introduce a coordinate
system whose origin lies at B, the lower point of the rod
prior to falling, whose z axis points horizontally in the
direction in which point B moves during motion, and
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whose y axis points upward, along the rod prior to motion.
Since there are no forces that act on the rod in the hori-
zontal direction, the rod’s center of mass moves downward
(from C Lo B). As Figure (a) shows, the coordinates of the

’ Yia

IEN
| o«

8 D x ' B D X
(a) (h)

Fig. 1.42

poinls lying above the center of mass by a distance a
are determined by the equations

z = —acosa, y= (R <+ a)sina,
while the coordinates of the points lying below the cenler
of mass by a distance a are determined by the equations
z=uacosa, Yy = (R — a)sina.
These equations imply that in the process of falling the
rod (and thal means all of its points except the cenler of

mass) describes quarters of ellipses (Figure (b)) specified
by the equations

£+ vy (upper points)
a® ' (R+a)? '
2 ¥ 1 (lower poi

—F = (lower points).

When the rod is falling, its motion can be considered as
rotation about an instantaneous center, D. Therefore,
the velocity of the upper point (4) can be determined
just like in Problem 1.41, using the law of conservation
of energy. The appropriate equations yield

v=1)6gR.
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1.43. The velocity imparted to point 4 will be directed
in opposition to vq if the rod’s linear velocity acquired as
a result of rotation after the bullet has hit the rodis
greater than the velocity of the center of mass of the rod.
Moreover, for such a situation to occur, the distance z
must not exceed one-half of the length of the rod. Accord-
ing to the law of conservation of momentum,

mvy = m (v + oz) + M. (1.43.1)

Here we have allowed for the fact that the velocity of
the bullet after the bullet has hit the rod is the sum of
the velocity of the center of mass, v, and the velocity wz
which the point that is distant z from the center of mass
acquires as a result of rotational motion with angular
velocity .

According Lo the law of conservation of angular mo-
mentum,

mvyz,= m (v 4- wz) z + Jo, (1.43.2)

where J is the moment of inertia of the rod about the
center of mass, J = MR?%3. Multiplying (1.43.1) by z
and subtracting the product from (1.43.2), we get

© = Mvz/J = 3vz/R2.

The lincar velocity of rotation acquired by point A (we
denote this velocity by V) is

V = oR = 3va/R.

The ratio V/v is greater than unity if z > R/3.

1.44. According to the right-hand screw rule, the vector
of the angular velocity of the gyroscope is directed to the
right in the figures accompanying the problem and the an-
swer. The revolving platform applies a torque to the frame,
and the vector of this torque is directed perpendicularly
to the vector of the angular velocity of the gyroscope.
This torque creates an angular acceleration &, and under
this acceleration the vector of angular velocity rotates
in the direction shown by the arrow in the figure accom-
panying the answer. As aresult the giroscope’s axis places
itself vertically and the direction of rotation of thegyro-
scope coincides with the direction of rotation of the plat-
form. If the direction of rotation of the gyroscope or the
direction of rotation of the platform were to change, the
gyroscope’s axis would point in the opposite direction.
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In all cases the axis rotates in such a manner that the
vector of angular velocily places itself in the direction
coinciding with that of the vector of an external torque.
This property of gyroscopes is used in navigation in
gyrocompasses. The “platform” that applies a torque to
the gyroscope is the earth in this case.

1.45. The vector of the angular velocity of the top is
directed upward along the top’s axis (see the figure
accompanying the answer). The force of gravity applied
to the top at the top’s center of mass creates a torque

@
//""\\
{\ b
£ S~d
7 :
S
Fig. 1.44 Fig. 1.45

whose vector, being perpendicular to the vector of angular
velocity, is directed away from the reader. This torque
does not change the magnitude of the angular velocity
but creates an angular acceleration and hence changes
the direction of the vector of angular velocity, just like
centripetal acceleration does not change the value of
the velocity but does change the direction of the velocity
vector, as a result of which the body to which the centri-
petal acceleration is applied moves along a circle. In the
case at hand the direction of the angular acceleration is
such that precession occurs counterclockwise (if one views
the top from above).

1.46. Since no external forces act on the shaft-sleeve
system, the total angular momentum of the system re-
mains constant:

Jon 0o = (Jgn + J) 0. (1.46.1)
The moment of inertia of the shaft is
nd4
Jon=p351
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where p is the density of the material of the shaft and
sleeve. The moment of inertia of the sleeve is

amp 2
From (1.46.1) it follows that
0ol = o [(D* — d*) h - d*l],
whence
a4l dsl
T @ U—n Dk = T mi—ann @
1

e (E)E

1.47. The potential energy of an object on the top of a
hill, mgh, transforms into the kinetic energy of transla-
tional and rotational motion:

(0}

-

2
Replacing @ with v/R, we get
my? Ju?

R (1.47.1)

The moments of inertia of the disk, J4, and the sphere,
Jep, are

mgh =

Ja= m;{’ and J,pzi;-mli’z,
respectively, with R the radius of disk or sphere. Sub-
stituting these values into (1.47.1) and dividing by m,
we get

gh=" -2 =0.7502 (1.47.2)
for the disk and
gh="2-+2 =0.72 (1.47.3)

for the sphere. Since the left-hand sides of these equations
are the same, the final velocity of the sphere is greater,
and since the motion is uniformly accelerated, the sphere
will get to the horizontal section earlier than the disk.
Neither the masses nor the radii of the objects rolling
down the inclined planes are present in (1.47.2) and
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(1.47.3), with the result that the time it takes the objects
to roll down is independent of these quantities.
1.48. When the spacecraft goes into a circular orbit at
the perigee, it will circle the earth along a low orbit
during the second half of the orbit. For this reason the space-
craft’s potential energy at the new apogee will be lower
than at the old one and, hence, such a maneuver requires
lower kinetic energy. This means that the spacecraft
must lower its velocity. Similar reasoning shows that
to go into a circular orbit at the apogee, the spacecraft
must increase its velocity.
1.49. The kinetic energy of a satellite is determined by
the value of the orbital (or satellite) velocity. According
to Newton’s second law and the law of universal gravita-
tion,
Mm mv?

¢ =&
where M is the mass of the earth, m the mass of the satel-
lite, v the velocity of the satellite, and G the gravitational
constant. From this it follows that the kinetic energy

my? GMm
Win="3"="31

is the smaller the higher the orbit of the satellite.
The potential energy (we take it equal to zero at in-
finity)
Mm
Wpot =—G R
is the greater Lhe higher the orbit of the satellite. The
same is true of the total energy:

M
W =W+ Wpet= —G—ijn-.

The angular momentum also increases as we move farther
away from the carth and is equal to

mvR=m V) GMR.

1.50. Let us consider an extremely elongated orbit. In
this case the distance between the foci differs little from
the length of the major axis. Therefore, the force acting
on a space stalion near the apogee can be assumed to be
roughly the same for all extremely elongated orbits.
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Under this force the space stations move with the same
accelerations w, = V¥R, where R is the curvature radius
of the trajectory, and v is the velocity at apogee. The
smaller the radius of curvature, the smaller is the veloc-
ity of a space station, and the greater the elongation
of the orbit, the smaller is the radius. Hence, the velocity
and therefore the kinetic ecnergy at apogee tend to zero
and the space stations possess almost exclusively poten-
tial energy.

Since the total energy of a space station remains con-
stant in flight, at all other points on the orbit it is equal
to the sum of the kinetic and potential energies. The
potential energy of the interaction between the carth and
the station (this energy is assumed to be zero at infinity) is

Wpot: —G Me ’

a

where M is the mass of the earth, m the mass of the station,
G the gravitational constant, and a the distance from the
center of the earth to the station (this quantity is prac-
tically equal to the length of the major axis of the orbit).
When circling the earth along a circular orbit whose
radius R is approximately a/2, the station possesses
potential energy

W ot == — 26 2

As shown in the solution to Problem 1.4Y, the kinetic
energy of the station in this case is

M
Wkln =G am ’
while the total energy is
W= —C Mm ,
a

which means that it is the same as for an elliptical orbit.
It is convenient to determmine the angular momentum of
a station when the station passes through the apogee:

L = mva.

For extremely elongated orbits, a is roughly the same
for all orbits, but the greater the clongation of the orbit
the smaller the velocity at apogee. Hence, the angular
momentum at apogee is the smaller the greater the clon-
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gation of the orbit. But since the torque of the force of
attraction to the earth is zero, the angular momentum
must be the same at all points of the orbit. Hence, the
energy of the station in a circular orbit and that of the
station in an elliptical orbit coincide, while the angular
momentum is the smaller the greater the elongation of
the orbit.
1.51. The fact that the spacecraft retains its orientation
with respect to the earth means that all points of the
spacecraft move with the same angular velocity. Suppose
that the point closest to the surface of the earth moves
with the orbital (satellite) velocity according to the
equation
0R=G-3r ,

where R is the distance between this point and the center
of the earth. The point of the spacecraft farthest from the
earth moves with an acceleration w? (R 4 D), where D
is the distance between the two points.

If we consider the spacecraft to be a noninertial system,
we can assume that on an object of mass m placed at the
point farthest from the earth there acts a force of inertia

Fi= —mo® (R + D).

At the same time, there is the force of gravity acting on
this object:

(1.51.1)

Mm
(R+D)**

The sum of these two forces plays the role of “weight”
for the object, or numerically the reaction of the support
exerted on the object:

Fy=mo*(R+D)—G

F=G

Mm
(R4+D)**

Bearing in mind that D <« R, we can replace (R 4 D)2
with (1 — 2D/R)/R?. Thus

Fumm[oR (1+5)—61 (1-22)],

R R R
and if we allow for (1.51.1), we get
M 3D
Fym G — 5
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Since GMm/R? is equal, to a high accuracy, to the
weight of the object on the surface of the earth, or mg,

we get Fo= —:%l mg.

This expression gives the “weight” of an object in the
spacecraft at the point farthest from the earth. Assuming
that D is 2.1 m and bearing in mind that R = 6300 km,
we find that the “weight” of an astronaut whose mass is
70 kg is 6.9 X 10~* N at the point within the spacecraft
farthest from the earth.
1.52. The potential energy of the comet (equal to zero
at infinity) is —GMm/r, where m is the comet’s mass,
M the mass of the sun, and r the distance between the sun
and the comet. As the comet approaches the sun, this
energy decreases, which means that the kinetic energy
increases, with

my? Mm

2 —G r
remaining zero.* The angular momentum of the comet
is also conserved, since the torque produced by central
forces is always zero. If we take two points, one at the
aphelion of the presumable closed trajectory and the other
placed at the same distance from the sun on the second
branch of the parabola, then the potential energies at
these points must coincide (since the distances coincide),
which means that the kinetic energies at these points
coincide and so do the velocities. But, as follows from
the figure accompanying the problem, the angular mo-
mentum at the aphelion must be higher than on the
branches of the parabola, which is impossible. At the
same time, at symmetrical points both the kinetic ener-
gies and the polential energies are the same, and the same
is true of the angular momenta.

The above reasoning is true for both closed orbits
(ellipses and circles) and open orbits (parabolas and hyper-
bolas) of heavenly bodies moving in the field of a single
attraction center. The fact that both the energy conser-
vation law and the angular momentum conservation law
must be satisfied mnakes it impossible for a central force
to change the nature of a trajectory.

* It is assumed that the initial kinetic energy of the comet in
far-away regions of space is negligible.

151



1.53. If D, is the diameter of the disk at rest, then in
the system of coordinates with respect to which the disk

] y
N (D
Fig. 1.53

is in motion the diameter in the direction of the velocity
will be

D-:D,VT—?¢=D, Y T—p

The same is true of the ratio of the halves of the chord
passing at an altitude y froin the center:

z=ux,) 1—p>.
Since 2} = R? — y%, we have
P= (R -y (1 — P

whence

‘3 y:
wma-p e

The moving disk appears to be an ellipse with semi-axes R
and RY1 — B
1.54. The vclomty of the triangle is directed perpendic-
ularly to the altitude, with the result that the length of
the altitude is independent of the velocity. The hypote-
nuse is equal to twice the altitude (I, -= 2h), while the
length of a side of the equilateral triangle is [ --
Zhdtan 30°. Thus, for the moving triangle we have I = [,
an

‘/3h 2h Y TP

Hence f == 0.816.
1.55. As Figure (a) accompanying this problem shows,
the world line passing through the origin at an angle 0
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to the a/c axis represents the motion of an object moving
away fromn the observer (placed at the origin) with a
velocity v = ¢ cot 0. The other figures correspond to the
following cases: (b) an object moving toward the observer
with a velocity v = ¢ cot 0, (c) motion with the specd
of light, and (d) an object is at rest at a certain distance
from the origin. Case (e) contradicts the main principles
of relativity theory since it represents the motion of an
object with a speed greater than that of light.

1.56. According to the thecory of relativity, the kinelic
energy of a moving object is given by the following for-
mula

Wrel = moc2 (

1
—r—_— 1-
Vi—p )
with f = vl/e. In classical mechanics,

myv?
WC] = .

2
Thus,
Wrel =£_( 1 — )
Wer B ]/1—[32 )
Since B = cot 0, we have
Wre] — 2 ( 1 _ 1 )
Wel cot?0 \ /' T—¢ot20 )

At 6 = 60°,
Wrcl/WCl == 1-37.

1.57. Lel us assume that at ¢ == O by the clocks in both
systems, the systems were close to each other (in the
figure accompanying the problem this moment corre-
sponds to the origin). If one of the systems sends a signal
after a time interval 7'y has elapsed, the second system
will receive the signal after a time interval
. 1-+p
T=T, 1—p

The angle 0 corresponds to a relative velocity f = cot 6.
Thus,

1+cot T+cot®
T= TOV T—cot® °
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1.58. The time interval separating Lhe signals received
by B from A is

q 1+p

r=1) =5
Since system C is moving toward A, its (relative) velocity
is negative and, hence, the signals it sends are reccived
by A separated by time intlervals

r,=1,)/ =L

1+f5
System A will register N signals from B in the course of

t=NT,=NT,)/ 15,

while the signals from C will be registered in the course of

t,== NT,=NT, ]/ = l—B

When systemm A4 meets system C, the clock in the first
system will show

2NT,
ty=t,+t,= NT, ( 1+5+1/ _

148 ) Vi1—p2 -

The clock in C will show the time that is the sum of the
time during which system A4 sends N signals prior Lo
meeting C and the time during which system C sends N
signals prior to meeting system 5. Thus,

te = 2NT,.

The difierence in the readings of the clocks will be

At ty—to=2 (1/—11—?— 1) NT,.
The fractional variation in the duration of the signals is
B _ 1
Vi—p:’
For example, at f = 0.6 we have
tgltc = 1.20.
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2. Molecular Physics and Thermodynamics

2.1. The buoyancy, or lifting power, is the difference
between the weight of the air in the volume occupied by
the balloon and the weight of the gas lilling the balloon.
According to the ideal-gas law, the latter weight is
_ pVM
P‘" RT gv
where Visthe volume of the balloon, p the pressure of
the gas, and M the molecular mass of the gas. Accordingly,
the lifting power is given by the formula

V,
F= %(Malr—Mgas)’

and the buoyancy ratio is

FH2 Mair—MH2

Fye = Mayr—Mye * (2.1.1)

nto Eq. (2.1.1) we can substitute the relalive molecular
masses. The relative molecular mass of hydrogen is 2,
that of helium is 4, and that of air we assume to be equal
to 29. Thus,

Fry _ 29-2 _ 4 g

Fre  20—4

2.2. The root-mean-square velocity of molecules is

v=V3RT/M .

Taking logs, we get
logv =3 log (3R/M) + 5 log T.

The slope of the straight line log v vs. log 7" must be 0.5,
and the dependence of the logarithm of velocity on the
logarithm of temperature is given by straight line C in
the figure accompanying the problem.

2.3. Since the velocities of the molecules are different,
it takes the molecules different times Lo fly from the slit
to the outer cylinder. Because of this the cylinders rotate
through angles that are different for different molecules.
The greater the velocity of a molecule, the closer will
its track be to the track for fixed cylinders.
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2.4. The position of the tracks shown in Figure (b)
accompanying the problem is possible if during the time
of flight of the molecules from the slit in the inner cylinder
to the wall of the outer cylinder the cylinders perform
more than one-half of a full revolution (in Figure (b)
this is almost one full revolution). Of course, for this
to happen, the linear velocity of the outer cylinder must
exceed many times the velocity of the molecules, which
is practically impossible.

2.5. The number of molecules in the velocity interval
from v to v + dv is

dN = F (v) dv.

Accordingly, in Figure (a) accompanying the problem,
the hatched scgments represent the following quantities:
segment A represents the number of molecules whose
velocities do not exceed v,, or

-

N,=\ F @) dv,

0

segment I represents the number of molecules whose
velocities are not lower than v, and do not exceed vy, or

v3
Ny=— S ¥ () do,
2
and segment C represents the number of molecules whose
velocities arc not lower than v,, or
No— S F (v) dv.
7
In Figure (b) accompanying the problem, each hatched
segment represents the ratio of the corresponding number
of molecules to the total number of molecules, that is,
the probability of molecules having velocities that lie
within the specified velocity interval.

2.6. Since for each velocity interval from v to v + dv
the number of molecules is

dN = F (v) dv
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and since F, (v) = 2F, (v), the total number of molecules
corresponding to distribution 2 is twice the number of
molecules corresponding to distribution 7.

2.7. The number of molccules in the velocity interval
from v to v + dv is

dN = F (v) dv.
Each of these molecules has an cnergy mo?/2. All mole-
cules in the velocity interval from v, to v, have the energy
V2 2
W=S T F (1) dv.

o1

To find the average energy w of such molecules, we must
divide W by the number of molecules:

v2

§ v (v) dv
_m vy
W=3" "%
S I (v)dv
1

2.8. According to Maxwell’'s law, the number of mole-
cules of a gas whose velocities lie within the interval
from v to v - dv is given by the formula

AN = Nom( ST )3/2v2exp(——%—), (2.8.1)

Since the most probable velocity is
vp=V 2kTIm,
we can represent (2.8.1) in the form
- ~yz [ 2)2 —[2)? v
dN = Nyjén (vp) exp[ (vp)]d(vp)’
The distribution function F (v/vp) then assumes the form
v - v \2 v \2
F () =Noteve () exp [ (—55) ]
For v/lv, =1 we have
F (1) = N04n-1,20-1 ~ 0-83N0.
The F (v/vp)-to-F (1) ratio (see the figure),

o) ro = (&) e 1 ()],
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is the same for any number of molecules of any gas at any
temperature and, therefore, is a universal function.
2.9. From formula (2.9.1) it follows that

1 dN
f(w):ToH ,

or

1 dN dv
f0)= 5= 3 qw -

Since v = (2w/m)'/?, elementary transformations yield
2 w \1/2 w w
AN =Ny —= (7)) " exp (= 57) d (57 )

This representation is convenient since the dimensionless
ratio w/kT is taken as the independent variable and the

Fv)/F(v) fw)

[ S —

.

0 kT 2kT 3KT w

|
|
|
!
|
|
|
i v/vp

Fig. 2.8 Fig. 2.9

distribution function proves to be valid not only for all
gases but also for any temperature. The function f (w)
is shown in the figure.

2.10. The total energy of the molecules of a gas is the
sum of their kinetic and potential energies. Assuming that
the potential energy is zero at the initial level, for any
other level we have w,,¢ = mgh. Since the total energy
remains constant, or wg;n + Wpet = const, we have

Wigin + Wpot = Wkino-
Hence, at a given level the kinetic energy is
Wxin = Wgine — mgh.

The maximal altitude to which the molecules can rise
is determined by the condition wyy, = 0, whence

h = Wyyno/mg.
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By hypothesis, wyno = (3/2) kT. Substituting & — R/N,
and m = A/N,, we gel

I SRT/2Myg.

Substituting the values of the molecular masses, we find
that at 7 = 300 K the maximum altitude for nitrogen
is 13.6 km, for oxygen 11.9 km, and for hydrogen 191 km.
Since Lhe kinetic energy of the molecules decreases as the
altitude grows, the “temperature” of a gas decreases, to0o,
but differently for different gases. Different gases have
different “temperatures” at the same altitude above sea
level. At the highest level where the molecules of a given
gas can still be found, the “temperature” of the gas is 0 K.

Note, in conclusion, that by its very meaning the baro-

metric formula, which is derived on the assumption that
the temperature of the gas is constant, is equivalent to
the statement that the Maxwellian velocity distribution
is valid. Indeed, the barometric formula leads to Boltz-
mann's formula for the distribution of molecules in po-
tential energy. The same formula can be obtained using
the Maxwell formula.
2.141. To answer this queslion, we assume, for the
sake of simplicity, that the balloon is a cylinder with
its axis vertical and having a length h. If we denote by p,
the pressure on the lower base of the balloon, then the
pressure on the upper base is

p = poexp (—Mgh/RT).

Since Mgh/RT < 1, we can expand the exponential and
retain only the first two terms:

p = po (1 — Mgh/RT). (2.11.1)

The buoyancy is given by the formula
F =S8 (py — p)

where S is the base area of the cylinder. Substituting the
difference p, — p from (2.11.1), we get

F = MghS/RT,
or
F = poMgVIRT.

The fraction p,M/RT constitutes the density of air,
PoMV/RT the mass of the air that would occupy Lhe
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volume of the balloon, and p,MgV/RT the weight of
this mass of air. Thus, the Lwo explanations are equiv-
alent.

2.12. 1f we take two subsequent displacements, I; and
l,, during time ¢ in which these displacements took place
the particle is displaced by I*, with

2 =12 - 12 | 201, cos a
(see Lhe figure accompanying the answer). Since the dis-
placements are completely random both in length and
direction, while the angle between two successive displace-
ments is independent of the displacements, we conclude,
first, that
(D =<1

and, second, that the third term is zero because all di-
rections are equally probable. Thus,

(1*2) =2(13) = 21y).

One must bear in mind that we have averaged the squares
of the displacements and not the displacements proper.

p'

h
- X
B | 1 1,
fﬁo
T
Fig. 2.11 Fig. 2.12 Fig. 2.13

However, since there is a constant relationship betwecen
the mean square and the square of the arithmetic mean
for a definite distribution function, we can always re-
place the ratio of mean squares with the ratio of the
squares of the mean,

@2 _ (e

2T T

and, hence,
(I*y =12 (b.
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This result can be applied Lo any interval of time, which
makes it possible to establish the following relationship
between the displacements of a Brownian particle and the
time it takes the particle to perform these displacements:

——((lt))z = const.

This is the main law of Brownian motion. It is also valid
for the motion of molecules in a gas.

2.13. Any concrete path of a molecule can be decomposed
along three arbitrary coordinate axes of a Cartesian sys-
tem, with

P=0 4+ tB

For each separate path these projections are, generally
speaking, differcnt, but since the motion is chaotic and,
hence, the probabilities are the same for all three di-
rections, these projections are equal, on the average, so
that

(L) = (lp) = ().

If we are interested in a projection along a definite di-
rection, which, like all others, is arbitrary, then we can
write

(12) = 3 (I3).

The relationship between the mean of a square and the
square of a mean is the same for all directions, so that
we can write

=4V 3 ().

The two signs correspond Lo two opposite directions of
motion.

2.14. If the ean free path of the molecules is A, then
the probability thal on a segment dz a molecule expe-
riences a collision will be dx/A. Out of the N molecules
that have covered the distance x without colliding,
N (dz/A) molecules experience collisions over segment z.
Hence, the number of molecules that have traveled
without colliding will change by

dx
dN = --N 5=,
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If N is the total number of molecules, then the number of
molecules that have traveled a distance no less than z
without colliding is delermined through integration:

N x

C Ay dz
|- =15
0 0

or
In N =1n N,y — z/A.

Since on the vertical axis we lay off base-10 logarithms,
a and A are linked in the following manner:

A = 2.3/a.

Modern electronics possesses a number of methods for
determining the number of particles (molecules, atoms,
ions, electrons) whose path exceeds a definite distance,
which makes it possible to find the mean free path.

2.15. Since the diffusion coefficient of hydrogen is
higher than that of nitrogen, hydrogen will flow from

Fig. 2.15

part I to part 2 faster than nitrogen will flow from part 2
to part I. For this reason, at first the pressure in part
drops and in part 2 it rises. But then the rate of hydrogen
diffusion lowers (since the amount of hydrogen in part 2
grows and the nitrogen continues to diffuse into part I).
As a result, the pressure in part 2 begins to drop and the
pressure in part / begins to grow. The process continues
until the pressure in both parts becomes equal and the
partial pressures of the two gases in each part become

equal.
2.16. The diffusion coefficient of the gas is
1
D= -§' Av.
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In the closed vessel, the mean free path remains constant*
and the temperature dependence of the diffusion coeffi-
cient is determined only by the average velocily of the
molecules, which is proportional to the square root of
the temperature. The same relalionship exists belween
the temperature and the diffusion coefficient:

D oc T2,

In the open vessel, that is, at constant pressure, the con-
centration of molecules is inversely proportional to the
temperature and, hence, the mean free path is proportional
Lo the temperalure. Therefore, for this case we have

D oc T32

On the logarithmic scale the slope of a straight line is
equal to the exponent in the power function. IlIence,
curve (a) (with the slope equal to 3/2) corresponds to the
open vessel and curve (b) (with the slope equal to 1/2)
corresponds to the closed vessel.

* Here we have ignored the temperature dependence of the
effective cross section (the Sutherland correction term).
2.17. The diffusion rate, which characterizes the vari-
ation of the number dN of molecules passing through the
cross-sectional area S of the vessel per unit time d¢ in
the direction of the concentration gradient dr/dz, is

dN dn

T - D —a? So
Here D = (1/3) Av is the diffusion coefficient. Since the
diffusion coefficient is inversely proportional to the
pressure (because the mean free path is inversely propor-
tional to the pressure) and the concentration gradient at
each moment is proportional to the pressure, the number
of molecules diffusing in this or that direction is pressure
independent. This conclusion holds, of course, only if the
mean free path of the molecules is many times smaller
than7the linear dimensions of the vessel. Note that since
the initial number of molecules of each gas is proportional
to the pressure, the evening out of the concentrations
occurs the faster the lower the pressure of the gas.
2.18. The average kinetic energy of translational motion
of molecules is (3/2) kT. The average energy of the mole-
cules moving toward a wall of the vessel is 2kT. This is
explained by the fact that the flux of molecules with
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a certain velocity is proportional to n,v, where r, is the
concentralion of the molecules having this velocity.
Therefore, the higher the velocity, the greater the number
of molecules moving in a given direction. Hence, in the
velocity distribution of the molecules remaining in the
vessel there appears a deficit of fast molecules, which
Ieads to a decrease in the average energy of the molecules
and a distortion in the distribution function. On the
other hand, the average energy of the molecules leaving
the vessel for the vacuum becomes higher than it was in
the vessel. If the pressure of the gas is not low but the
orifice is so small that no collisions occur in it, the average
energy inside the vessel still decreases, if only this de-
crease is not compensated for by heat supplied to the
walls of the vessel. Under these conditions, the Max-
wellian velocity distribution is restored via the collisions
of molecules in the vessel, but now this distribution cor-
responds to a lower temperature. The restoration of the
distribution function occurs partially because molecules
collide with the walls of the vessel.

2.19. The heat flux is determined by the relationship

For the thermal conduclivity of an ideal gas we have Lhe
following formula:

Aocwv, or Aoc T2,

For the flux to be steady-state (time independent), the
following formula must hold true:

A %L == const.
xr
IIence,

712 —‘% == const.

We see that the higher the temperature the lower is the
gradient. The gradient must increase from the hot plate
to the cold plate. The position of the plates can be ex-
plained by the necessity of reducing convection to a
minimum.

2.20. Under the specified conditions, we cannot apply
the concept of temperature to the residual gas between
the walls of the Dewar vessel. The mean free path of the
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molecules of the gas is about 100 m, so that while moving
between the walls the molecules practically never collide
with each other and no thermodynamic equilibrium,
which could be characterized by a temperature, can estab-
lish itself between the walls.

2.21. Within a broad pressure range the thermal con-
ductivity coefficient is independent of the gas pressure.
A dependence (i.c. a drop in thermal conductivity as the
pressure lowers) becomes noticeable if the mean free path
of molecules becomes comparable to the distance between
the walls between which the heat transfer occurs. The
greater this distance, the greater the mean free path (and
the lower the pressure) at which the thermal conductivity
coefficient begins to change. Therefore, curve 7 corre-
sponds to the greater distance (see the figure accompanying
the problem).

2.22, Section I-2 in Figure (a) accompanying the prob-
lem corresponds to isobaric heating, section 2-3 to

P f -12 Ml a4 3 b /] 3
E - \‘X 'L
4 { ) { 4
T v v
v 4 3 p v 4
413
/ 2 I } 3
1 f
i * ' z
1 T T
(n) (h) ()
Iig. 2.22

isothermal expansion, section 3-4 to isochoric cooling,
and scction 4-1 to isothermal compression. In the p7-
and VT-coordinates this process is depicted in Figure (a)
accompanying the answer. The processes depicted in Fig-
ure (b) accompanying the problem proceed in the follow-
ing order: /-2 is isobaric healing, 2-8 isothermal con-
pression, 3-4 isobaric cooling, and 4-1 isothermal expan-
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sion. In the pV- and pT-coordinates this cycle is depicted
in Figure (b) accompanying the answer. The cycle de-
picted in Figure (c) accompanying the problem consists
of isochoric heating 7-2, isobaric heating 2-3, isothermal
expansion 3-4, and isobaric cooling 4-7. In the pV- and
VT-coordinates this cycle is depicted in Figure (c) accom-
panying the answer.

2.23. When the piston moves upward by Az, the spring
is compressed by Ah. Suppose I = —EkAR is the elastic
force produced in the spring by this compression. This
force contributes to the force acting on the piston and,
hence, increases the pressure of the gas in the cylinder by

:lF'__

k Ah k AV
N s 8T

Ap

where S is the surface area of the piston. Thus, the in-
crease of the gas volume caused by heating is accompanied
by a proportional increase in the pressure. On the dia-
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Fig. 2.23

gram this is depicted by a straight line with a positive
slope whose value depends on the surface area of the piston
and the eclastic propertics of the spring. The work is
measured by the hatched area in the figure accompanying
the answer and is

A = (py + pa) (Vo — Vy)/2.
2.24. The adiabatic p-V relation is of the form

pV¥ = const,



where the exponent y is the ratio of the specitic heat ca-
pacity of the gas at constant pressure to the specific heat
capacity of the gas at constant volume:

Y = cpley.

This ratio can be expressed in terms of the number of
degrees of freedom, i. A helium molecule has three de-
grees of freedom and that of carbon dioxide has six. There-
fore, for helium we have y = 5/3 = 1.67 and for carbon
dioxide we have y = 8/6 = 1.33. The greater the expo-
nent, the steeper is the curve. The upper curve (see the
figure accompanying the problem) corresponds to carbon
dioxide and the lower curve corresponds to helium.
2.25. An adiabatic curve is steeper than an isotherm
(see the figure accompanying the answer), with the final
pressure being lower in the adiabatic process than that
in the isothermal process. This means that the area lying
below the appropriate curve (this area characterizes the
work) is smaller for the adiabatic process than for the
isothermal.

2.26. The first law of thermodynamics for an isothermal
process can be written in the form Q = A. Hence, the
straight line corresponding to this process must be in-
clined at an angle of 45° to the horizontal axis (curve 3
in the figure accompanying the problem). For an isobaric
process we have

Q=AU + A.
Since the work for one mole of the gas done in anisobaric
process is
A = RAT

and the amount of the absorbed heat is
. -2
Q= CpAt= 3= RAT,

with i the number of degrees of freedom, we have
A 2

o T
The slope of the straight line representing the A vs. Q de-
pendence must equal 2/5 for a monatomic gas, 2/7 for
a diatomic gas, and 2/8 for a multiatomic gas. Straight
line 7 corresponds to a multiatomic gas and straight line 2
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to a monatomic gas. Work is not performed in an iso-
choric process, and this coincides wilh the horizontal
axis, while heat is not absorbed in an adiabatic process,
and this coincides with the vertical axis.

2.27. Processes depicted by straight lines coinciding
with the coordinate axes are quite obvious. The horizontal
axis (AT = 0) represenls an isothermal process and the
vertical axis (Q = 0) represents an adiabalic process.
The molar heat capacity of a monatomic gas involved
in an isochoric process is

Cy = (3/2) R,
and that of a diatomic gas is
Cy = (5/2) R.

The molar heat capacity of a monatomic gas involved
in an isobaric process is

C, = (5/2) R,
and that of a diatomic gas is
Cp, = (71/2) R.

The heat capacity C, of a diatomic gas coincides with
the heat capacity C, of a monatomic gas. For this reason
there are three straight lines in the figure accompanying
the problem instead of four, with straight line 2 corre-
sponding to C,, of a monatomic gas and C of a diatomic
gas. Straight line 3 corresponds to an isobaric process
involving a diatomic gas and straight line 7 corresponds
to an isochoric process involving a monalomic gas.

2T.§8. For the sake of brevity we denote (m/M) R by a.

en

pV = aT.
For both gases the work performed in an isobaric process is
A =p((V,—V,) = aAT,
while that performed in an adiabatic process is

A= P14y —psVe T —T, —a | AT | .
vy—1 v—1 v—1
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Substituting the values of y for nitrogen (7/5) and argon
(5/3), we gel

A =25|AT | (for nitrogen),
A =15 |AT | (for argon).

Selecting the scales on the coordinate axes of the figure
accompanying the problem in such a manner that a = 1,
we find the slopes of the straight lines to be 2.5 and 1.5
for the adiabatic processes and 1 for the isobaric process.
The straight line 7 depicls the adiabatic process involving
nitrogen, the straight line 2 depicts the adiabatic process
involving argon, and the straight line 3 depicts the iso-
baric process for both gases. The vertical axis (| AT | = 0)
depicts an isotherm and the horizontal axis (4 = 0) an
isochor.

2.29. The classical theory of heat capacity does nol
allow for the quantum nature of periodic motion (vibra-
tional and rotational). According to quantum theory, the
angular momentum of a rotating object may assume only
values specified by the condition

Jo=hYjG4+1), (2.29.1)

where 7 is the Dirac-Planck constant (the Planck con-
stant k divided by 2n), J is the moment of inertia of the
object, and j is the so-called rotational quantum number,
which can take on any integral values starting from zero.
Equation (2.29.1) enables finding the possible values of
the rotational kinetic energy:

Jo? he

W= = j(i+1).

The minimal nonzero value is
Wy = h¥J.

A molecule acquires and exchanges rotational energy
through collisions with other molecules. Thus, the question
of whether a molecule can have rotational cnergy in
addition to (ranslational is solved by comparing the
value W,, of the minimal nonzero rotational energy with
a quantity of the order of kT at room temperature. The
separation of atoms in a hydrogen molecule is 0.74 nm
and the mass of each atom is 1.67 X 10-?7 kg, so that
the moment of inertia of a hydrogen molecule is 4.6 X
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10-% kg-m?% Bearing in mind that %z = 1.05 X
10-31 J .5, we gel

Wa =24 x 10721 ],
At room temperature (7 =~ 300 K),
ET =41 x 1021 7],

The fact that £7 somewhal exceeds Wy, wmakes the occur-
rence of rotalional motion in a molecule quite probable.
ITence, the rotational degrees of freedom will contribute
to the heat capacity of hydrogen. At temperatures of the
order of 40 K the probability of rotational motion is
practically nil; it is said that the rotational degrees of
freedom “freeze out” and only the translational degrees
of freedom remain, which is reflected in the value of the
heat capacity. The diatomic gas that is closest to hydrogen
in the Periodic Table is nitrogen, and the mass of a ni-
trogen atom is fourteen times the mass of a hydrogen
atom. The separation of the atoms in a nitrogen atom is
0.11 nm. Accordingly, the moment of inertia of a nitro-
gen molecule is thirty one times that of a hydrogen mole-
cule, so that down to very low temperatures the value
of kT is considerably higher than W, and there is prac-
tically no “freezing out” of rotational degrees of freedom.
At the same time, for monatomic gases, whose moment of
inertia is several orders of magnitude lower than that of
hydrogen, the minimal energy of rotational motion
is so high that even at very high temperatures only the
translational degrees of freedom manifest themselves and
the heat capacity follows the predictions of classical theory
quite accurately.

2.30. According to classical theory of heat capacity of
ideal gases, the value of heat capacity for each given
process (say, an isochoric process) must not depend on
the temperature of the gas. This theory does not allow for
the quantum nature of periodic processes, namely, rota-
tional and vibrational motion. In classical theory, the
probability of rotational motion of diatomic and multi-
atomic molecules is assumed to be independent of the
temperature of the gas and the same (per each degree of
freedom) as that of translational motion. Quantum theory
requires allowing for the different probabilities of periodic
processes, with the probabilily growing with temperature.
Calculations have shown that for many diatomic gases at
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low temperatures the vibrational degrees of freedom can
be ignored, but the role of these degrees of freedom grows
with temperature. For sufficiently high temperature the
bonds between the atoms may break and dissociation
occurs. This requires large energy expenditure. In some
respects this process resembles phase transitions (melting
and boiling, for instance), when supplying heat does not
lecad to a rise in temperature.

2.31. The compressibility is defined by the following
formula:

1 dv
R TR

In an isothermal process,
d (pV) = pdV 4 Vdp

and, hence, § = 1/p. In an adiabatic process,
vV’ dV 4 VVdp =0

and, hence, p = 1/yp.
In all cases the dependence of the compressibility on
pressure is depicted by hyperbolas that differ only in

logf} p

! 3

Adiabatic

logp

Fig. 2.3 Fig. 2.32

a numerical factor. On the log-log scale the pressure de-
pendence of the compressibility is depicted by straight
lines (in the figure accompanying the answer the straight
lines correspond to adiabatic processes involving argon
and carbon dioxide and to the isothermal process).

2.32. In the figure accompanying the answer the pro-
cesses are depicted by broken lines 7-3-2 and 7-4-2. In
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the first case, the work is measured by the area bounded
by the broken line 5-4-2-6, while in the sccond it is mea-
sured by the arca bounded by Lthe broken line 9-7-3-6' and
exceeds the first arca by the area of 4-1-3-2-4. Since in
both cases the iunitial states (1) and the final states (2)
are Lhe same, the increment of internal cnergy is the
same, too, but the process 7-3-2 requires additional heat
for the system to perform greater work. Since entropy is
a tunction of state, the change of entropy in both cases is
the same.

2.33. The three quantilies characterizing the state of
an ideal gas, p, V, and 7, are linked through power re-
lationships for all processes involving an ideal gas:

V/T =const  (isobaric process),
pl/T —=const  (isochoric process),
pV=const (isothermal process),

pV¥-_ consl
vt const (adiabatic process).
pl TV D~ const

Ou the log-log scale all these processes are depicted by

straight lines that differ in their slopes. Isothermal

4 expansion is depicted

togp logv) 5 by a vertical straight

line in the downward

3 9 direction in the pT-

f 4 coordinates and in the

upward direction in the

2 { VT-coordinates. An adi-

abatic process is depicted

log T W by u straight line with

) (b) a slope y/(y —1)in the

Fig., 2.33 pY-coordinates and by

a straight line with a

negative slope —(y — 1)~Vin the VT-coordinates. A collec-

tion of such straight seginents can be used to depict the

Carnot cycle in the pT-coordinates (Figure (a)) and in the
VT-coordinates (Figure (b)).

2.34. The increment of Lhe entropy in a process is given

by the formula

AS = AQ/T.
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The straight line 0-1 in the figure accompanying the
problem corresponds to an isothermal process, since it is
parallel Lo the vertical axis (T = const). The slraight
line 0-4 depicts a process in which the entropy does not
change, that is, a process in which no heat is supplied
to or removed from the system, or an adiabatic process.
Out of curves 0-2 and 0-8 the former corresponds to a
higher entropy increment. The process represented by
this curve will require a larger amount of heat for bringing
the system to a given temperature than the process rep-
resented by curve 0-3 will require for bringing the system
to the same temperature. Of two processes, the isochoric
and the isobaric, the latter requires more heat to perform
work on the system. Thus, curve 0-2 corresponds to an
isobaric process and curve 0-3, to an isochoric.

2.35. The first process in the Carnot cycle is isothermal
expansion. In the process the gas absorbs heat and its
entropy increases. On the diagram

this process is shown by the straight 3

line 7-2. This is followed by adia- 3 - 2
batic expansion, which is accom-
panied by a drop in temperature.
Since in an adiabatic process the 4 f
gas is thermally isolated, the en-
tropy cannot change, which is rep- . .
resented by the straight line 2-3. At Fig. 2.35

the temperature achieved at the

end of this process the third process begins, namely, iso-
thermal compression, in which the gas gives off heat and
its energy decreases (the straight line 3-4). The final pro-
cess is adiabatic compression, which returns the gas to
the initial state. The entropy does not change in this last
process, just as in adiabatic expansion. The process is de-
picted by the straight line 4-1.

2.36. If m is the mass of cach object and c is the specific
heat capacity, then the total entropy increment is

T Ty
( dQ dQ T T
AS —= .\ —7—,—* S ,I—,’—'-L'm(ln f+1n—f).
11 To
Replacing T with (7, + T,)/2, we can write
(T1-+T2)?
AS :=cmln —4T—IT’—— N

173



or

AS - AS, + Sy =emin[ LT 4],

The expression in square brackets is greater than unity,
with the result that

AS > 0.
2.37. The entropy increment in the process is
AS = AQ/T = ¢ATIT. (2.37.1)
According to the figure accompanying the problem,
dS = adT. (2.37.2)

The straight line in the figure passes through the origin
since by the Nernst heat theorem the entropy at 7 = 0
is zero. Combining these two equations, we get

adT = c¢dT/T and ¢ = aT.

The heat capacity changes in proportion to the tempera-
ture, just as entropy does.

This result can be obtained without carrying out cal-
culations, solely on dimensional grounds. Entropy (irre-
spective of whether we are speaking of the entropy of the
system or the molar entropy or the specific entropy) has
the same dimensionality as heat capacity (irrespective of
whether we are speaking of the heat capacity of the system
or the molar heat capacity or the specific heat capacity).
For this reason the dependence of heat capacity on tem-
perature must be the same, to within a constant factor,
as the dependence of entropy on temperature. In the case
at hand the constant factors coincide, too.

2.38. The entropy increments on different segments are
To

dr T, Vs
ASi-zchjTi-_-Cpln T—l——cpln'v—l',
1
¢ ar T
ASi.3=¢ S—:c In =2 — —¢, In2L— —1n 22
1-3 VT T v T v Pa P
1
" ar T v v
. —_ 4 _ 4 2
AS:;-[,~-C],5T-—C!,IH?3—-—CP In Vs -—Cl)]n -W',
3

Te
dr T P
AS/,-Q’:-CV’S 7 = Cy lnT:-:—cV In ?42-,
4
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If we add all four quantities, we get
ASy g -=AS 13- AS3.4--ASy2=c, 1"-{% = A8y,

which is what we sel out to prove.

2.39. For the sake of making the calculations shorter,
let us select the mass in such a manner that in the approp-
riate system of units (m/M) R = 1. In this case the tem-
perature of the heater, which
is the highest temperature
in the cycle (point ¢) is

Ty = p,V,. ol d
The temperature of the cooler | |
(the coldest point in the cycle , 1 |
is point a) is % iV
T, = pV,. Fig. 2.39

The temperatures at points b and d are p,V, and p,V,,
respectively. The entropy increment for the heater in the
a-b process is

cvVy (p2—p1)
ASyy = — Salmem)

and in the b-c¢ process it is

cppe (Va—Vy)
AS, = —o2alla= V)

The entropy increment for the cooler in the c-d process is

v —
AS, .= + cy ; 1(‘flz p1)

1]
and in the d-a process it is

_ cpp1 (Va—V1)
ASri-a - + _-—_—_Plvl .

Adding all these entropy increments and carrying out the
necessary transformations, we get

V. |4
AS =cy (py— py) [—pl;l - p211/2 ]

Fe, =V (—3-)-
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All the differences in the brackets are positive, and hence
AS > 0.

The entropy increment for a gas performing a cycle and
relurning as a result to the initial state is equal to zero.

2.40. If we solve the van
P der Waals equation for p,
we get

_m RT _ a
P=7r v Ve -

0 /\ This equation is of a hyper-
__FU—W V bolic nature, and because
\ of this it must have a
branch in the third quad-
rant, which contains, at a
sufficiently low tempera-
_ ture and a negative pressure,
the third root. Since this root corresponds to a neg-
ative volume, it has no physical meaning and is
usually not depicted on diagrams. Note that Boyle’s law
also contains an “extra” root. It also lies in the third
quadrant and for this reason has no physical meaning and
is usually not depicted on diagrams.
2.41. The van der Waals equation presupposes conmplele
homogeneity of the substance (vapor or liquid), thal is,
the same density in all (however sinall) volumes. In real
media, however, there are fluctuations. Suppose we are
considering state 2 on the curve (see the figure accompany-
ing the problem). The parameters of this state (or point)
determine the average values of the concentration and
energy of the molecules. In small volumes the values of
the concentration are somewhat larger or smaller than
the average value because of the randomness of molecular
motion. The same is true of the energy of molecules in
small volumes. In accordance with the isotherm, in
volumes of higher density the pressure is somewhat lower
than the average, while in volumes of lower density the
pressure is somewhat higher. Therefore, in the former the
density continues to rise and in the latter, to drop. As
a result the entire substance separates into two phases
with a higher and a lower density, and the pressure in
both is the same. The greater density is that of the liquid
and the lower is that of the saturated vapor of this liquid.

Fig. 2.40
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2.42. Section 2-3 corresponds to supersaturated vapor.
For this state to realize itself, there must be no dust,
ions, or acrosols in the space where this state occurs for
the vapor to condense on and form drops of liquid. Sec-
tion 6-9 corresponds to the so-called superheated liquid.
This state can be arrived at if we boil and degasify the
liquid prior to heating it, then heat it in such a way so
that it fills the entire volume of the vessel, and finally
cool it again. The liquid will find itself under a pressure
that is lower than that of the

saturated vapor. KEspecially e
interesting is the state of a ™% —1-
liquid corresponding to the
section of the isotherm lying
below the horizontal axis
(see the figure accompanying
Problem 2.40). This state
corresponds to uniform stretch-
ing of the liquid. The slate ]
can be achieved by repeat- Fig. 2.42

ing, say, Torricelli’'s experi-

ment in modern vacuum conditions. Before filling the
tube with mercury, all gases must be evacuated from the
tube via prolonged heating and the mercury must be
pumped into the tube under a vacuum. In this case there
is no Torricellian vacuum above the mercury when we
turn the tube over, the mercury sticks to the inner surface
of the tube thanks to molecular adhesion, and the part
of it lying above the level corresponding to atmospheric
pressure will be under negative pressure (see the figure
accompanying the answer). Thus, it is possible to obtain
negative pressure (uniform stretching) of the order of
three atmospheres.

2.43. We use the reductio ad absurdum proof. In Fig-
ures (a) and (b) accompanying the answer we have two
variants that differ from the variant shown in the figure
accompanying the problem. In each of these variants the
arrows show a cyclic isothermal process. As a result of
each of these processes, useful work is done (the amount
of this work is equal to the hatched area) with an effi-
ciency of 100% thanks to complete utilization of the
heat received from the heater, which of course contradicts
the second law of thermodynamics and, hence, is impos-
sible. If we assume that the hatched areas in the figure

760 mm Hg
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accompanying the problem are the same, the works done
along the paths 2-4-6 and 2-3-4-5-6 are equal. But doesn’t
this contradict the second law of thermodynamics, that
is, can a cyclic process along the path 2-4-3-2 be per-

P p

v v
@) (b)

Fig. 2.43

formed? One must bear in mind that while points 2 and 6
correspond to a single (i.e. the same for both curves)
one-phase state, point 4 corresponds to two different
states, a one-phase state on the theoretical curve and a two-
phase state on the experi-

) mental curve. The entropies
of these two states are differ-
ent, and so are the internal
energies of these states, ener-
gies related to the interaction
Pua [~ between the molecules.

! | 2.44. Suppose that under the
I ' piston there is a liquid and
I | .
Vig Veap v its saturated vapor, whose
pressure is counterbalanced by
the external pressure. If heat
is supplied to the liquid iso-
thermally, the liquid evaporates and the piston rises.
The work done by the vapor when the vapor increases
its volume by AV is given by the formula

A = pyapAV,

Fig.* 2.44

where pyap is the pressure of the saturated vapor. If at
the beginning there is only liquid whose volume is V)4
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and at the end only vapor whose volume is Vvap, the
entire work done during evaporation is

A = Pvap (Vvap - qu)-

This work is measured by the area bounded by the hori-
zontal section of the isotherm, the horizontal axis, and
the segments from 0 to pyga, at Vyq and Vg,

2.45. As the pressure is raised from the atmospheric to
the test pressure, a liquid or gas accumulates energy,
which is equal to the hatched area under the curve. If

PH- F"\

Liquid v
(@)

Fig. 2.45

the cylinder or pipe fails, only a small fraction of the
energy is liberated by the liquid (Figure (a)) because of
the small compressibilities of liquids, and the pressure
falls to the atmospheric practically immediately. In the
case of a gas the accumulated energy may be extremely
high (Figure (b)) and the consequences of its liberation
may be catastrophic.

2.46. When a liquid is heated, its density drops, so
that the volume it occupies may increase notwithstanding
evaporation. The decrease in the density of the liquid
and the simultaneous increase in the density of the vapor
lead to a drop in surface tension. As a result the meniscus
becomes flatter and at the critical point disappears com-
pletely. Of special interest is the phenomenon of critical
opalescence, discovered by T. Andrews in 1869, which
consists in the medium becoming suddenly “cloudy” at
the critical state. This phenomenon serves as a vivid
illustration of fluctuation effects. Extremely small fluctu-
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ations in the density of the medium, fluctuations that
are due to the random movements of molecules, lead to a
situation in which the densily in some microscopic vol-
umes becomes, at certain moments, somewhat higher
than the one corresponding to the critical point, and
these volumes transform into the liquid, while the neigh-
boring volumes remain being a gas (the ones with the
lower density). In subsequent moments this situation
may change. In this sense the entire volume filled with
the fluid consists of constantly changing liquid-gas inter-
faces on which the light is scattered.
2.47. When a liquid is evaporating, energy is conslantly
required for performing work against external forces (the
external heat of evaporation) and against the forces of
cohesion between the molecules (the internal heat of
evaporation). When a liquid is evaporating adiabatically,
the energy necessary for evaporation is taken away from
the internal energy, whence the liquid cools off. This
decrease in internal energy may be so great that the re-
maining liquid may transform into the solid state. Even
if the heat insulation is not perfect, cooling may still be
considerable. This property, for
one thing, is employed in some
. types of commercial and house
refrigerators.

2.48. A drop has only one spher-
ical surface while a bubble has
two, the inner and the outer,
whose curvatures are almost the
same in magnitude but opposite in sign. For this rea-
son the two surfaces of a bubble create excess pres-
sure directed toward the center of the bubble. Thus,
the excess inner pressure in a bubble is approximately
twice as large as in a drop (of the same radius).

2.49. The excess pressure inside a bubble is determined
by the formula

Fig. 2.48

Ap = 40’/7‘,

where r is the radius of the bubble, and ¢ is the surface
tension. Because of this the pressure inside the smaller
bubble is greater and the bubble contracts, while the
larger bubble grows. Equilibrium is attained when the
film of the smaller bubble forms a surface near the outlet
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of the pipe with a curvature radius that coincides with
the one of the larger bubble.

2.50. The vapor pressure above the convex surface of
a liquid is higher than that above the flat surface, with
the corresponding difference being the greater the smaller
the curvature radius of the surface.* Hence, for the
smaller drop (Figure (c)) the vapor is unsaturated, while
for the greater drop (Figure (a)) the vapor is supersaturat-
ed. Drop (a) evaporates, while drop (c) grows. The equi-
librium of drop (b) is unstable, since if the size somewhat
decreases, the drop begins to evaporate, while if the size
increases, the drop grows.

* The excess pressure is determined via the Thomson formula

PvapMo

AP = “Rrer

where pyap is the vapor pressure above the surface, A1 the
molecular mass (weight), R the universal gas constant, 7' the
temperature, o the surface tension of the liquid, p the density
of the liquid, and r the curvature radius of the surface.

2.501. The curvature of the surface of a liquid creates an
excess pressure (known as Laplace pressure) directed
toward the center of curvature. This pressure is the higher
the smaller the radius of curvature of the surface. In the
case of water, the excess pressure (ncgative) lends to
strelch the drop, while in the case of mercury it tends to
compress the drop. For this reason, the plates with the
drop of water between them are under forces that bring
them together (“attractive forces”), while the plates with
mercury between them tend to move apart (“repulsive
forces”). ’

2.52. The excess Laplace pressure, caused by the curva-
ture of the liquid surface, is direcled toward the center
of curvature of the surface and is inversely proportional
to the radius of curvature. For this reason, the drop of
water is under a negative pressure (that in absolute value
is greater than the pressure acting on the mercury drop)
in the narrow part of the pipe and this pressure is directed
toward the tapered end, with the result that the drop tends
to move toward the tapered end. In the case of mercury,
the pressure is directed in opposition, that is, toward the
wide end of the pipe, and it is in this direction that the
drop tends to move.
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2.53. Surface tension (the surface tension coefficient) is
defined as the ratio of the free energy of the surface layer
of the liquid to the area of this surface. The free energy
here is understood to be the energy that can be converted
into work. This energy is determined by the interaction
of the molecules of the surface layer with the other mole-
cules, where the interaction with the molecules of the
vapor above the surface is usually ignored. As the tem-
perature is increased, the interaction of the molecules of
the surface layer with the molecules in the bulk of the
liquid weakens and that of the surface layer molecules
with the vapor molecules grows. At the critical tempera-
ture both interactions become equal, the interface be-
tween liquid and vapor disap-
pears, and so does surface tension.
Thus, it is curve 2 that reflects
the correct temperature dependence
of the surface tension coefficient.
2.54. If we assume that the water
wets the wall of the tube in an
- - - = ideal manner, then, if the tube is
sufficiently high (R > h,), and the
Fig. 2.54 diameter of the tube is small, the
radius of the meniscus is equal to
that of the tube. If h << h,, the
waler will rise in the tube and reach the upper end. After
this the curvature of the meniscus will decrease until it
reaches a value that satisfies the equation

.. 20
pgR ’

where R is now not the radius of the tube but the radius
of curvature of the meniscus, r << R.

2.55. Although the cross-sectional area of all four pipes
of diameter D/2 each is equal to that of one pipe of ra-
dius D, the volume flow through these pipes is lower.
This follows from Poiseuille’s law

__ mApD4
0= 128nl

Thus,.the volume flow through each of the four pipes of
D/2 diameter is lower than that through the big pipe not
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by a factor of four but by a factor of 16 (at the same pres-
sure head), with the result that the total volume flow
through the four pipes will be one-fourth of the flow
through the big pipe.

2.56. The transverse distribution of velocities in the
flow of a viscous liquid in a horizontal pipe is determined

i

<
&

o= -
<
=
3

Fig. 2.56

via the formula (Figure (a))

oemvn[ 1= (5)']

The radial coordinate y is reckoned from the pipe’s axis.
The time it takes the particle to fall from the wall to
a point whose ordinate is y is

t = (R — y)lv,.

In the course of this fall the particle will be shifted in the
horizontal direction over a distance

v Ui

x:,—.vadt.-_ —?—mg{i— (%)2}@

y

[ (4) R
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The shape of the particle’s trajectory in Figure (b) is
represented in dimensionless coordinates, y/R and (z/R) X
(Vy/ V).

2.57. Each figure accompanying the problem contains
the initial segments of the graphs representing the cooling
of water or the heating of ice. Continuing these graphs, we
arrive at the intersection point in each figure. If the point

te "'CL te
) %0 80 ,
/
/
sl \ Water 401» Water 40 , /
/
/
0 F—Freezinq -0 B Meni,ng - 0 —<\_ T
Ice \
-4l 40F f Ice 40 \\
-80 -30 -80
(a) ¢ (b) e (c) ¢
Fig. 2.57

of intersection lies above the horizontal line corresponding
to a temperature of 0 °C, the final temperature is positive,
when the point lies below this line, the final temperature
is negative. If the graphs meet on the line ¢ = 0 °C,
the final temperature is O °C and the amount of the phase
that has a horizontal section on the graph prior to inter-
section will decrease. The ralio of the length of this sec-
tion to the total length of the horizontal section corre-
sponding to this phase determines the fraction of the
initial mass of this phase that has transformed into the
olher phase. When analyzing the graphs, we must bear
in mind that the slopes of the straight lines are determined
by the mass of waler or ice and their specific heat capacity
by the formula

M
AQ  cm

Here one must bear in mind that the specific heat capacity
of water is twice as high as that of ice. The lengthof the
horizontal sections corresponding to the water freezing
or the ice melting is determined by the fact that the
amount of heat required for melting a certain amount of
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ice is equal to the amount of heat required for heating
the same mass of water to 80 °C. For the sake of illus-
tration, Figure (a) accompanying the answer shows the
diagram for the cooling off of a mass of water from 80
to 0 °C, then the freezing of this water, and finally the
cooling off of the ice down to t = —40°C. Figure (b)
accompanying the answer shows the reverse process in
which the same amount of ice is heated from —80 to 0 °C,
then melted, and finally heated in the form of water to
60 °C. The scales along the horizontal axes are arbitrary
but equal, with the amount of heat expressed in arbitrary
units. (It is easy to see that all this has no effect on the
answer.) The two diagrams are combined in Figure (c)
accompanying the answer. In the present case we see
that the final temperature is 0 °C and half of the ice has
melted. Applying this procedure to the case illustrated
by Figure (a) accompanying the problem, we see that
the ice has completely melted and the final temperature is
10 °C; for Figure (b) accompanying the problem, half of
the ice has melted and the final temperature is 0 °C; for
Figure (c) accompanying the problem, the case is similar
to (b) but half of the water has frozen; finally, for Fig-
ure (d), all the water has frozen and the final temperature
is —20 °C.

2.58. At the lowest possible pressures and the highest
possible temperatures a substance may exist only in the
vapor state (region 7). Compressing the vapor at relatively
high temperatures, we can transform it into the liquid
state provided that the temperature is below the critical.
The curve separating region I from region 2 corresponds
to pressures and temperatures at which the liquid is in
equilibrium with the saturated vapor of this liquid, with
the region 2 corresponding to the liquid. 7' on the tem-
perature axis stands for the critical temperature. By
cooling the liquid, we arrive al temperatures at which
there is equilibrium between the liquid and the solid
phase—this corresponds to region 3. Al low pressures
there can be equilibrium between the vapor and the solid,
but there is only one value of temperature and pressure
at which equilibrium can exist between all three phases.
This is the so-called triple point, and it is at this point
that all three curves meet.

2.59. As distinct from the majority of substances, the
ice-water system has an equilibrium curve with a negative

185



slope. In view of this, higher pressures correspond to a
lower temperature at which ice and water are in equi-
librium. If ice was under an external pressure p, at a cer-
tain temperature and then this pressure was increased to
Ps, then at a certain pressure p,, whose value lies on the
phase equilibrium curve, the ice will melt. The anomalous
dependence of the melting point of ice on pressure is
linked with the anomalous relation between the densities
of water and ice. As a rule, the density of the solid phase
is higher than that of the liquid, but for water the situ-
ation is the opposite: the density of ice is lower than that
of water. This property is extremely important for the
preservation of life in ponds, lakes, and rivers. If the den-
sity of water were lower than that of ice, all ponds, lakes
and rivers would freeze solid.

2.60. Compressibility is defined thus:

1 dv
B:“T dp
whence dV/V = —B dp. Hence,
Va D2
dv
K - = = S pdp.
Vi1 11

Integration yields
P2
In(V,/V,) = S Bdp.
ri

The integral on the right-hand side gives the area bounded
by the curve, the horizontal axis, and the vertical straight
lines at p, and p,. After evaluating this integral, we turn
to the volume ratio. If the compressibility were pressure
independent, the volume ratio would be

ViV, = exp [B (ps — pi)l.

2.61. At a maximum point the derivative dp/dt is zero.
For this reason near a maximum the deviations in the
density from the maximum value for small deviations in
the precision with which the temperature is measured are
at a minimum, with the result that in the neighborhood of
the maximum the precision with which density is deter-
mined is the highest.
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2.62. As is known, the heat flux is determined by the
equation

do _ _, dr

de " dz

Assuming that the heat flux is steady-state and, hence,
dQ/dt is the same at all points of the wall, we find that
where the absolute value of the gradient d7/dz is greater,
the respective thermal conductivity coefficient is smaller.
Hence, the inner layer of the wall has a higher thermal
conductivity.

2.63. To elongate the rod by Al, we must apply, accord-
ing to Hooke's law, the force

ES

S.

F= 7 Al. (2.63.1)
The work of elongation performed from z to z 4 Az is
dA=Fdx= ES o dz,

l
and the work performed from O to Al is

ES
A - T (Al)z.

Multiplying the numecrator and denominator by [ and
introducing the notation

A/l = ¢

(the strain, or extension per unit length), we get

_ESL

A= —-—2— €°.
The performed work goes to increasing the internal energy
of the rod, that is, the energy of elastic deformation.
Dividing this energy by the volume of the rod, we get
the bulk energy density

w = E¢¥/2.
From (2.63.1) it follows that
Ee = F/S = 0,

where ¢ is the internal mechanical stress. For this reason,
the bulk energy density can be represented as

w = o&/2.
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2.64. For each bar the thermal linear strain is

Al/l = aAT,
while the mechanical linear strain is
Al/ll = —o/E,

where o is the internal mechanical normal stress (Young's
modulus), which is the same for both bars. The sum of the
two strains is zero:

aAT — o/E = 0.

Hence, all = o/AT. Since the right-hand side isthe same
for both bars, we can write o, E, = a,E,, or

oo, = E/E;.

If the walls possess the same mechanical properties, the
deformability of the walls has no effect on the result.

3. Electrostatics

3.1. The components of the electric field strength that
are generated by the charges at the acute angles are equal
and are directed toward the negative charge. If we denote
the length of the hypotenuse by 2a, each of these compo-
nents is Q/4ne,ea® and the sum is Q/2me,ea®. The com-
ponent of the electric field strength generated by the
charge 4-2Q is the same. It is direcled al right angles to
the hypotenuse away from the right angle. The resultant
field strength is directed parallel to the leg connecting
the charges 4-2Q and —Q along vector 3.

3.2. Since in the case at hand all the electric field vec-
tors lie on a single straight line, the vector sum may be re-
placed with the scalar sum. For unlike charges the di-
rection of the resultant vector does not change while for
like charges it does. In the case illustrated by Figure (a),
the electric field strength is posilive everywhere. Allowing
for the signs specified in the problem, we conclude that
the left charge is positive and the right charge is negative.
Similarly, for the case illustrated by Figure (c), the left
charge is negative and the right charge is positive. In
Figures (b) and (d) the electric field strength changes its
sign at the midpoint of the distance between the charges.
Obviously, this can only occur if the charges are like.
Bearing in mind the aforesaid and allowing for the rela-
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tionship between the direction of the electric field vector
and the sign of the charge generating the field, we con-
clude that for the case depicted in Figure (b) bolh charges
are positive, while for the case depicted in Figure (d)
both charges are negative.

3.3. Since both electric field vectors lie on a single
straight line, they can be added algebraically, just as we
did in the previous problem. The electric field strength to
the right of charge Q, in the immediate vicinity of the
charge is negative; hence, the charge is negalive (the
electric field vector is directed toward the charge). The
electric field strength may be positive to the right of Q,
only if @, is positive and greater (in absolute value)
than Q,. The electric field strength is zero at point 2, if

Qa . & )
I+ zy)? zi ’
whence
Qo _(Lin )
Qb 1 )
At all points that are to the right of Qp the electric field
strength is specified by the equation

—_Qa
Bo= oy —
Taking the derivative with respect to z and nullifying it,
we find that the maximum is at the point

l
27 (QalQu)r—1 -t

3.4. The direction of the electric field vector al a point
with coordinates = and y (see
the figure accompanying the
answer) is determined by the
two components, £, and E,:

Z

E.—_ " S
X7 2negr ! V7 2megy *

For the extension of the resul-
tant vector to pass through Fig. 3.4

the origin, which is where

the conductors intersact, the slope of the vector must
be equal to y/z, that is,




Thus,

tana - ylz =Y 1,/7,.
3.5. No such point can exist in region /I, since the elec-
tric field vectors of the two charges point in the same di-

rection—from the linear charge to the point charge. In
regions I/1 and I the electric field vectors of these charges

+TlE |

|
|
N
\_/

Q -

|
|
l
I
I
|

|
Fig. 3.5

point in different directions. Let us examine each region
separately. At a certain point to the right of the point
(.zharge, the electric field strength produced by this charge
is

E, = _Qlineya?,

where z is the distance from the charge to the point. The
linear charge produces the following field at the same
point:

E, = t/2ne, (x + a).
The sum of these fields is zero if
Q T

222 ez

_20 ¢ @
i=frx) o+

Only the plus sign in front of the radical sign has any
meaning, since the minus sign corresponds to a point to
the left of the point charge, where the electric field
strengths of both charges are added rather than subtracted
from each other (the quantities are equal in absolute val-

whence
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ue). Now let us turn to region I, that is, to the left of
the linear charge. To see whether there are points in this
region where the electric field strength is zero, we deter-
mine the electric field strengths produced by the two
charges in this region. For the sake of convenience we
direct the x axis to the left and take point 4 on the
linear conductor as the origin (see the figure accompany-
ing the problem). Then the field produced by the point
charge is

P Q
Ey=— 4ney (a+x)2
while that produced by the linear charge is
o T
27 2negr *

The two vectors point in opposite directions, obviously.
The condition that their sum is zero yields the following
equation for z:

2+ (2a—-—) z4a2=0,
whence

x:i(———za):t]/ (52— 2¢)" —a.

The net field strength in region I is zero if the radicand
is positive, obviously, that is, if

Q > 8ar.

If this condition is met, region I contains two points
where the electric field is zero. The distribution of the
electric field strength along the z
axis is shown schematically (with- —
cut a definite scale) in the figure -
accompanying the answer. \ Z iu }‘
3.6. Let us first: solve this prob-
lem by dimensional considerations. 1,
Here are the quantities on which
the interaction force between the Fig. 3.6
conductors might depend: the

charge densities, the distance between the conductors,
and the “absolute” permittivity

Ba = 808,

a
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which obviously has the same dimensions as the permit-
Livity of empty space &,, since the dielectric constant &
is dimensionless. The SI dimensions of these quantities
are

[F] = LMT"?, [t] = LTI, [e,] = L3M™1T4I?,
{a] = L.

Assuming that these quantities enter the expression for
force # with exponents p, ¢, and r, we can write

F = CtPela’

(C is a dimensionless constant), and the equation for the
dimensions is

LMT-? = [L7T1]P X [L3MT*) 9% L.

This yields the following equations for the exponents:

1=—P—‘3Q+"7 1:—q1 -—2=P+4Qy

0=p+ 2.
Hence,
P:2, q =-——1, r:O,
or
F=C2% (3.6.1)
g

We have found, therefore, that the interaction does not
depend on the distance between the conductors.

It goes without saying that C cannot be determined by
dimensional analysis alone. The same problem can be
solved by direct integration via the Coulomb law. In
the figure accompanying the answer, 4 stands for the
point where the plane of the drawing “cuts” the conductor
with linear density t;. The electric field generated by
this conductor at the point with the element dz of the
second conductor distant r from the first is

E=_1

2neger *

The following force acts on element dz of the second con-
ductor:

dF = E7, dz.
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We are interested, however, in the component of the force
that is perpendicular to the second conductor, or dF cos o,
since the longitudinal component is canceled out by an
equal component acting on the symmetrical element.
Let us express all linear quantities in terms of distance a
and angle a:

a a

r= dz == o.
cosa ’ cos2a d

Substituting these quantities into the expression for the
perpendicular component of the force acting on element
dr, we get (after canceling out like terms)

dF = 2%2_(q
2ngge ’

Integration from —mn/2 to 4m/2 yields

T1T
2gpe

H s

)

that is, we arrive al an expression of the (3.6.1) type.
Hence C = 1/2.

3.7. The element of the disk bounded by radii p and
p - dp and angle d¢ carries a charge (taking into account
both sides of the disk) equal to 20pdpd¢. At a distance z
from this element and, hence, at a distance r from the
disk’s center (Figure (a)), the electric field generated by
this charge is

__20pdpde
E= 4negez? *

Only the component of this field that points in the di-
rection of r is of any interest to us since the perpendicular
component is canceled out by an equal component (point-
ing in the opposite direction) from the symmetrically
situated charge. For this reason, the charge on the disk
limited by the radii p and p 4 dp creates an electric field

dF — pdpocosa (3.7.1)

z2
We express all geometric quantities in terms of distance r
and angle o

rda
cos2o °

r
= — y=r tana dp=
cosoa ’ f ? p
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After substituting into (3.7.1) and canceling out like
terms, we get
osinada
dE = 28nods

Integration from & = 0 to the value a,, corresponding
to the edge of the disk yields

(3.7.2)

(9 o
Err;()—li—(l—cosa,n): .

e (1= 7))

For r <« R, angle o is close to 90°. In this case, £ ~
o/eye, just as in the case with an infinitely large plate.

(@)
Fig. 3.7a

Let us calculate E for r >> R. To this end we express
cos &y, in terms of r and R:

r
CoOS O, = —o—m————.,
Ve

Using the rules of approximate calculations, we arrive at

VR Vit Rire

~R
~ 22

Substituting this into (3.7.2), we get

_ OR?
- 28087‘2 °
Since o = Q/2nR?, we have
__ 90
E= 4mgger? °

just as for a point charge (see the problem).
Figure (b) shows the variation of the electric field of
the disk with distance (curve 7); for comparison, the
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straight line 8 corresponds to the field created by an in-
finitely large plate with a surface charge densily equal to
that of the disk, while curve 2 corresponds to the field
of a point charge whose magnitude coincides with
the charge of the disk. Dimensionless coordinates are

E/Ey

wpe———} ]

0.6

0.2

r/R

(v)
Fig. 3.7b

employed in Figure (b): 7/R along the horizontal axis and
E/E, along the vertical axis (E, is the electric field strength
generated by the infinitely large plate).

3.8. The force with which an electric field acts on a di-
pole is

dE
F = DPel d_r . (38'1)

Since an infinitely long straight conductor with an evenly
distributed charge (density) generates an electric field

T

2ngqger
we have (according to (3.8.1))
e __TPel
F= Srteger? (3.8.2)

Nothing was said in the problem about the sign of the
charge on the conductor. Obviously, if the charge is
positive and the dipole moment coincides in direction
with the positive direction of the electric field vector,
the dipole will move toward the conductor, which agrees
with the “minus” sign in (3.8.2).
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3.9. 1If the field in the region between the plates can be
assumed to be uniform, the plates of the parallel-plate
capacitor interact with a force

F = gyeE25/2,

where S is the area of the plates of the capacitor. Since
E = U/l, with U the potential difference between the
plates, we have

F = g,eU2S/202.

Thus, for a given potential difference between the plates,
the attractive force is the greater the smaller the distance
between the plates. If the upper plate is balanced by
weights, a small decrease in the distance between the
plates leads to an increase in the attractive force, while
a small increase in the distance leads to a decrcase in the
force. In both cases the balance will be violated. This
means that the plate equilibrium is unstable. There is
a special set screw in the electromcter that does not
allow the upper plate to move below the level at which
the measurement is taken.

3.10. The force acting on the strip when the strip lies
on the lower plate is determined by the formula for the
attractive force between the plates of a parallel-plate
capacitor,

_ goeE? __ QE
F= 222 50

where S is the area of the strip, as if it was part of the
lower plate of the capacitor. When this force becomes
greater than the weight of the strip, the strip begins to
move upward, but retains its charge Q = oS.

When the distance between the strip and the lower
plate becomes great, the strip will not only be attracted
by the upper plate but will also be repulsed by the lower
plate where the charge density will gradually become
even. As a result, the force on the strip increases in mag-
nitude. If we ignore the distortions introduced by the
charge of the strip into the field (this can be done if the
strip is small), we can assume that the strip isin a field
of strength £ and that the following force acts on it:
F = QE. The charged strip induces a charge on the upper
plate as it approaches the plate. This leadsto a distortion
in the field and a slight increase in F. Although in the
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above discussion we have considered a flat strip, the same
line of reasoning is valid qualitatively for any small con-
ductor lying, at the initial stage, on the lower plate of
the capacitor.

3.41. Let us first solve this problem by dimensional
analysis. The following quantities are present in the
problem: the initial potential difference U that the
electron or ion has to pass, the potential difference U,
between the plates, the distance d between the plates, the
sought distance [ that the electron or ion has to travel
before it hits the plate, the charge Q of the particle, and
the particle’s mass m. The equation for the dimensions
can be written as follows:

(] = [@1lU,PlUIQI[m]¥,
or
L = Lo[L2MT 3 Ab+[ITT*MV.
For the exponents we have the following four equations:

a+2b4+2c=1,b4+c+y=0,
z—3—3=0,z—b—c=0,
whence
a=1, b=— z=0, y=0.
We see that the distance traveled by the particle (an
electron or an ion) does not depend on the charge-to-mass
ratio.
We arrive at the same result if we solve the equation of

motion of the particle. Under the potential difference U,,
the particle acquires a velocity

v="V 2QU,M,

with which it moves parallel to the plates, while the
acceleration with which the particle moves transversely
to the plates is

w = QU/md.

The particle takes a time interval
/d m
=) L—a V e
to. cover the distance
l :Ut:‘d VzUD/U .
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This conclusion has a broader meaning than the one
obtained earlier. It follows that for a given initial energy,
a charged particle moves in an electric field along a tra-
jectory that does not depend on the particle’s charge-to-
mass ratio.

3.12. A dipole that is placed in a nonuniform electric
field and is oriented along the field’s direction is under
a force

dE
F=pa—g-

where p,; is the dipole electric moment. If the direction
of the dipole’s axis is taken as the positive direction, the
direction of the force will be determined by the sign of
the derivative. In the case at hand the derivative is
negative and, hence, the dipole is moving toward the
point charge.

3.13. A point dipole oriented along the lines of force
of the field created by a point charge is under a force

dE
Fp = Pel er

Since the electric field created by a point charge is

Eq= 4ngger?
we can write
dEq _ Q
dr 2meqers '

with the result that the force acting on the dipole is
F — Qpe1

P T 2nggErs *

At points that lie on the axis of the point dipole, the
electric field of the dipole is

. Pe)
E,= 2negerd *

When a point charge Q is in this field, the force acting
on it is

_ Qpel
Fq= 2e,Erd

In accordance with Newton's third law, this force must
coincide in magnitude with, but be opposite to, force Fp.
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The positive direction in the figure accompanying the
problem is the one from the point charge to the
dipole. Therefore, the “minus” sign in the force acting
on the dipole implies that this force is directed toward
the point charge. The field created by the dipole at
the point where the point charge is positioned has
a “plus” sign, that is, is directed toward the dipole. The
force acting on the point charge points in the same
direction.

3.14. The electric field in which the sphere is placed in-
duces charges of opposite sign on the sphere, in view of
which the sphere becomes a dipole. After the sphere is
shifted, it finds itself in a nonuniform field, which forces
it to move toward the charge to which it was shifted.
Thus, the equilibrium of the sphere at the midpoint be-
tween the charges is unstable.

3.15. Due to electrostatic induction, one side of the
sphere becomes positively charged, while the other becomes
negatively charged, and the sphere becomes a dipole.
At first glance it might seem that since the dipole is
oriented along the lines of force of the field and the field
of the capacitor is uniform, no forces act on the sphere.
But this is not so. The presence of the sphere will distort
the field. The charge density, and hence the field strength,
at the points of the plates that lie on the straight line
that is perpendicular to the plates and passes through
the center of the sphere will increase. The dipole will find
itself in a nonuniform field and will be attracted to the
plate that is closer to it. If the string enables the sphere
to touch the plate, the sphere will lose its charge, which
is opposite to the one on the plate. But the sphere will
then acquire a charge that is of the same sign as that on
the plate it has just touched. This leads to a repulsive
force between sphere and plate, with the result that the
sphere will move toward the other plate. After touching
this plate (if the string enables it to do this), the sphere
will reverse the sign of its charge and will move in the
direction of the first plate, and so on.

3.16. If the distance between the spheres is not very
large, the charges on the spheres are not evenly distrib-
uted over the surfaces. The effect of the spheres on each
other results in that in the case of like charges the sections
of the spheres that are farthest from each other will
have an enhanced charge densily, while in Lhe case of
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unlike charges the sections of the spheres that are closest
to each other will have an enhanced charge density. For
this reason, the distance between the “centers of charge”
for like charges is greater than that for unlike charges.
Hence, the attractive force between the unlike charges
will be greater (in magnitude) than the repulsive force
between the like charges.

3.17. The field strength in each layer is

__ 0
4meger? °
On the log-log scale,
Q

4e,

log E, = log —logeg—2logr, (3.17.1)

and

log E, = log 4:?30 —loge,—2logr, (3.17.2)
in each layer at the boundary between the layers. Sub-
tracting (3.17.1) from (3.17.2) and bearing in mind that
the difference of the logarithms of two quantities equals
the logarithm of the ratio of these quantities, we have

log (E,/E;) = log (g,/&,).

Hence, in the inner layer the dielectric constant is higher
than in the outer. The difference of the logarithms of the
field strengths in Figure (b) accompanying the problem
is about 0.3, which corresponds to the ratio of the dielec-
tric constants of about 2.

3.18. The lines of force of electric induction become dens-
er as one moves closer to the solid dielectric, which means
that the density of bound charges on the surface of the
solid dielectric becomes enhanced. This density is the
higher the greater the dielectric constant. Whence &, > &;.
3.19. The potential at each point is the algebraic sum
of potentials of the field of each charge. For a point
charge, the potential at distance r from the charge is

Q

4ngqger

q):

(it is assumed that the potential at infinity is zero).
When the charges are like, the absolute value of the
potential at a point r distant from one of the charges is

wz-éng.e (}+——l—i—r-)
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The sign of the potential coincides with that of the charge.
Hence, in Figure (a) both charges are positive, while in
Figure (c) both are negative. When the charges are unlike,
the potential at midpoint between the charges is zero.
The potential is positive closer to the positive charge
to the left in the case shown in Figure (b) and to the right
in the case shown in Figure (d).

3.20. The field strength vanishes only at one point, 3,
where the derivative do/dr is zero. Since near charge Q,

Q
a € £,
~
3N S Er
2

5, (@

Er/Em,
Y/ P

081

06+

()
Fig. 3.21

the potential is negative while near Q, it is positive, we
can conclude that Q, and Q, are negative and positive,
respectively. The potential at every point in space is
the algebraic sum of the potentials produced by all charges.
To the right of Q, (except in the immediate vicinity
of Q,) the potential is positive. This implies that in
the entire region to the right of Q, the potential produced
by Q, is greater in absolute value than the potential
produced by Q,. Hence, the absolute value of Q, is greater
than that of Q,, too.

3.21.  Since potentials must be added algebraically, we
conclude that at a point removed from the middle of the
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distance between the charges by an interval of r the
polential is

(the polential at infinity is assumed to be equal Lo zero).
Hence, the potential falls off as r increases in exactly
the same manner on both sides of the straight line con-
necting the charges. At great distances (r > a), ¢ varies
in exactly the same way as the potential produced by
a point charge equal to 2Q does.

There are two ways in which one can determine the elec-
tric field in this problem: either directly calculating the
values of the vectors and adding the vectors geometrically,
just as shown in Figure (a), or employing the formula
that links the electric field strength and the potential,
E = —dg/dr. Both methods yield

— or
E,= 2Qeoe (a2 -r2)3/2
The electric field strength vanishes at exactly the middle
of the distance between the charges and at an infinite
distance from them. It is at its maximum, which can be
found by nullifying the derivative d£,/dr:

dEr _ !20 (a2+r2):\/2__3r2 (a2_+_r2)1/2 ]—O

dr TIEGE (a%+ r2)5/2
The electric field strength is maximal at r = a/)/2, with
E, — 017

T 4megea

Figure (b) shows the behavior of £ and ¢ in dimensionless
coordinates: ¢/¢n, E/Ey, and r/a.

4y & @

Fig. 3.22

3.22. All the equipotenlial surfaces of the field between
the sphere and the plate are convex downward (that is,
toward the plate). Hence, on any straight line parallel
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to the plate, the points farther from the sphere have
a potential lower than those closer to the sphere. Hence,
the point charge is moved from a point with a lower
potential to a point with a higher potential. This requires
doing work against the forces of the electric field.
3.23. Point 7 has a positive potential with respect to
the negatively charged plate of CZ. This potential is half
the difference in potential between the plates of CI (and
of C2). Since point 2 lies in capacitor C2 closer to the
negatively charged plate, its potential is lower than that
at point I. When the point charge is moved from
point I with a higher potential to point 2 with a lower
potential, the electric field performs work equal to the
product of the strength of the point charge by the
potential difference between points 7 and 2:

A =Q (9, —g,)>0.

3.24, [Initially the capacitance of the capacitor (filled
with the dielectric) is C = eyeab/l. After the dielectric
is moved out of the capacitor by a distance z, the ca-
pacitance becomes

C =c¢epalz + e(b— )l

Since the total charge on the plates of the capacitor re-
mains unchanged, the potential difference between the
plates becomes

— Q!
U= gart+e(®d—z)] ’

where Q is the charge on the plates. Since initially the
potential difference was U = Ql/ejeab, we have

U eb eb

U, z+eb—z) eb—(E—1z *

The field strength between the plates will increase by the
same factor. The charge density in the part without the
dielectric is

— __ &oQ
aE =k = Tt =04 -
while on the part with the dielectric it is

Y

0 =etl = T e =1 4]
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Initially the charge density on each plate was

00 == O/ab,
or, respectively
0y b Oy e
vy ey ey el sy ey eyl

In the part filled with the dielectric, the charge density
gradually grows in the same proportion as the electric
field strength and the potential difference between the
plates, while the total charge of this part gradually de-
creases due to the increase in z. In the part not filled with
the dielectric, the charge density first drops e-fold (at
z < b) and then gradually grows, approaching the value
it had when the dielectric filled the entire space between
the plates.

3.25. Being a conductor, each plate has the same po-
tential at each point, while the electric field strength,
which is minus one multiplied by the gradient of the
potential, is highest where the plates are closest to each
other. At the same time, the electric field strength near
the surface of a conductor is linked with the local surface
charge density through the formula E = o/e,e. For this
reason, the surface charge density at point I is higher
than that at point 2.

3.26. The electric field strength at the core is

20
Ey= 50Dy

To find the extremum of E, we take the derivative,

dEl _ —2U (lnDz—lnDl)—i
D, = [D; (in Dz —In DY

and nullify it. The result is

InD, —InD, =1,
or
Dl = Dz/e.
This corresponds to a minimum, since E; tends to oo
as D; -0 and D, —D,.

3.27. Since the charges on the capacitors CI and C2
are equal, the potential difference across these capacitors
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and the capacitance of each capacitor are linked through
the following formula:

C,U, = C,U,. (3.27.1)
For capacitors C3 and C4 there is a similar formula:
C,U; = C,U,. (3.27.2)

For a potential difference between points ¢ and & to be
zero, we must make sure that U, = U; and U, = U,.
Dividing (3.27.1) by (3.27.2) termwise and canceling
equal potential differences, we get

CI/C3 = C2/C4.

Note that if a constant potential difference is applied
between points 4 and B and the capacitors leak some
charge (i.e. their resistance is not very high), the distrib-
ution of potential between the capacitors is the same
as in the Wheatstone bridge, that is, is proportional to
the resistances.*

* These considerations must be taken into account in some other
problems, too (e.g. see Problems 3.30 and 3.31).

3.28. The charge of the solid sphere is
Q=5 7k,

where p is the volume charge density. Outside the sphere,
that is, for r > R, the electric field strength coincides
with the electric field strength of
the same charge @ concentrated,
however, at the center of the

sphere: , ‘\
E—_0Q _ 1 pR (3.28.1) \’
4rieger? 3 geEr? ’

On the surface of the sphere,

___PR
Ep=—8 . (3282 -
To find the electric field inside Fig. 3.28a

the sphere, we isolale a sphere
of radius r << R inside the sphere (Figure (a) accom-
panying the answer). The charge contained in this
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smaller sphere is 4mpr3/3. According to Gauss's theorem,
the electric field at the boundary of the isolated sphere is

- 4nprd . i pr
I 3 X dneer: ~ 3 ge (3.28.3)

Thus, the electric field along r behaves in two ways: in-
side the sphere it increases linearly with r according to
(3.28.3) from zero to the value given by formula (3.28.2),
while outside the sphere it decreases by a quadratic
(hyperbolic) law, just as in the case of a point charge.
The behavior of the potential inside and outside the
sphere must also be considered separately. Inside the

sphere,
@ r
\ dp. P S N SO S i
5 d= 3e,e S rdr= 6y T 9= 6 eoe °
@0 0

At the boundary of the sphere,
1 pR?
Pr=Po— ¢ et

Finally, outside the sphere the potential is distributed
thus:

Q T

¥ 4 pmr3 [ dr oV pers 1 A

S do = 3 eee _S 2 PTPr= 3 €0t (r—F)'
P

Putting ¢ = 0 at r = oo, we get

_ 1 pR?
R™ 3 g

(3.28.4)

If this is taken into account, we can write for the potential
outside the sphere the following formula:

A pR?

3 eeer °

Formula (3.28.4) can also be used to find the potential
at the center of the sphere:

_ 1 pR?
(PU'_ 2 €o€
For the potential distribution inside the sphere we then
get
- P _(p2_1
cP 2608 (R 3 )
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Figure (b) accompanying the answer shows the behavior
of the electric field and the potential inside and outside

@/Pm, E/Enm
10 P/ @m
E/Em
06
02 F
1 1 ]
0 1 2 3 r/R
(b) "/
Fig. 3.28b

the sphere. Dimensionless coordinates ¢/¢,, E/Enp,
and r/R are employed.

3.29. Let us isolate a thin layer of thickness dz parallel
to the plates and lying between them (Figure (a) accom-
panying the answer). A
unit area of this layer car-
ries a volume charge pdz.
According to Gauss’s theo-
rem, the electric field gen-

erated by this layer is ol £ Lox
equal in absolute value (on X
each side of the layer) to
dE* = pdz/2¢,.
(b

If all the charges to the
left of the isolated layer Fig. 3.29
generate a field of strength

E, the resultant electric field strength is £ — dE* at
the left boundary of the layer and E 4 dE* at the
right. Thus, over a distance of dz the electric field

strength increases by
dE = 2dE* = p (da/ey).
Integration yields

E = px/eq + E,,
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with E, the electric field at the left plate. According to
the basic equation of electrostatics (the one that links
the electric field strength with the potential),

gt
0
Integration from 0 to z yields

2
P — @y 5o+ Eot, (3.29.1)

where ¢, is the potential of the left plate, which is zero
by hypothesis. The potential is zero also at z = l. Hence,

E, = —pl/2¢,.

Substituting this into (3.29.1), we arrive at the relation-
ship between ¢ and z:
R .
@ 26, z(l—2).
This function represents a parabola with a maximum at
x = 1/2. The skeiches of the ¢ vs. z and E vs. « curves
are shown in Figure (b) accompanying the answer.

3.30. When the capacitors are connected in series, the
charges on them are the same. Since these charges are

Q= C\U, = CzUzv

the capacitor voltages are inversely proportional to the
capacitances. Hence, the voltage applied to the capacitor
filled with the dielectric is smaller than that applied to
the air capacitor by a factor equal to the ratio of the di-
electric constant {o unity (the dielectric constant of air,
roughly).

3.31. If C, is the initial capacitance of each capacitor,
the total initial capacitance of the two capacitors is
C = Cy/2. After the distance between the plates of one
capacitor is increased, the capacitance of this capacitor,
C’, becomes smaller than C,. The voltage U, applied to
the capacitors is distributed among the capacitors in in-
verse proportion to the capacitances, since the charge on
the plates is

Q = U, = U,
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Since U, remains unchanged, the voltage across the capa-
citor whose plates are not moved will decrease, while that
across the second capacitor will increase.

If the capacitors are first charged and then disconnected
from the DC source, the charge on them will remain un-
changed. The voltage across each capacitor will be

U, = Q/C,, U, = QIC,.

For this reason, the potential difference across the capa-
citor whose plates are not moved remains unchanged,
while that across the second capacitor increases.

3.32. When the capacitors are connected in parallel, the
initial capacitance is C = 2¢,eS/l. After the distance
between the plates is changed, the capacitance becomes

20ES €8S 2g,eS
C — %t 2 _ 0
l4+a

l—a  1—a?/l *
The new capacitance is grealer than the initial one.
When the capacitors are con-
nected in series, 0 ¢

1 2l

C T TeeS

After (he distance between [N <
the plates is changed, N N

1  l+ta l—a 2l

[ + £o8S  geES
that is, the capacitance re-
mains unchanged.

3.33. The electric displace-
ment vector has the same o
length in both halves, and Fig. 3.33
since E = D/eye, the elec-

tric ficld strength is lower in the half filled with the di-
electric (where the potential gradient is smaller in abso-
lute value), that is, part 7 (see the figure accompanying the
ploblem). If removal of the dielectric does not alter the
charge on the plates, the potential behaves in the same way
as it did in part 2 prior to removal of dielectric and the
total potential difference will increase (Figure (a) accom-
panying the answer). If removal of the dielectric does
not alter the potential difference, the points representing
the potentials on the plates (¢ and 0) will remain unchang-
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ed, while the slope of the straight line will acquire a val-
ue intermediate between the one it had in the dielectric
and in the air prior to removal of dielectric (Figure (b)
accompanying the answer).

3.34. Since the lines of force of the electric displacement
vector are continuous and the field in each part is uni-
form, with the lines of force being perpendicular to the
vacuum-dielectric interface, the electric displacements is
the same in both parts. The electric field strength, which
is defined by the formula £ = D/e,¢, is higher in the va-
cuum. The electric-field energy density is determined via
the formula w = ED/2, which shows that this quantity
is higher in the vacuum.

3.35. Since the potential difference between the plates
of the two capacitors is the same and so is the distance
between the plates, the electric field, which for a paral-
lel-plate capacitor is £ = U/l, is the same for both capa-
citors. According to its definition, the electric displace-
ment D = g,ek, is greater in the capacitor with the dielec-
tric. In a parallel-plate capacitor, the surface charge den-
sity is numerically equal to the electric displacement and
therefore must be higher in the capacitor with the dielec-
tric. This also follows from the fact that the capacitor
filled with the dielectric has a higher capacitance, which
means that, with a fixed potential difference, the charge
on its plates is greater than that on the plates of the air
capacitor. The electric-field energy density, determined
via the formula w = ED/2, is also higher in the capaci-
tor with the dielectric.

3.36. The total energy is the sum of the interaction cner-
gies of each charge with the other charges in the system, or

We_@ _ o _0&

4meqer 4reqer

By hypothesis, W = 0, whence Q, = Q/2.

3.37. The energy stored by a capacitor is determined by
the electric-field energy density in the capacitor and the
capacitor’s volume: W = wSI. Since the energy density is

w = D?%egge, (3.37.1)

after the dielectric is removed, the energy of the capaci-
tor will increase e-fold. Since the charge on the capaci-
tor remains unchanged, the value of the electric displace-
ment vector remains unchanged, too. If prior to removal
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of the dielectric the distance between the plates was I,
and after removal it was changed and became equal to
Iy, the fact that the energy remained unchanged in the
process can be expressed as follows:

DSl DaSi,
€81 &8

Hence the distance between the plates must be decreased
e-fold. Formula (3.37.1) shows that after the dielectric
is removed (bul prior to changing the distance bhetween
the plales) the capacitor increases its energy. This increase
in energy is due to the work performed in removing the
dielectric. The work is done against the forces of attrac-
tion of the free charges on the plates of the capaci-
tor and the bound charges on the surface of the dielectric.
3.38. Since the capacitor voltage remainsconstant, the ener-
gy stored in the capacitor, W = U?C/2, decreases because
when the dielectric is removed, the capacitance decreases
e-fold. If the entire system consisting of the DC source
and the capacitor is considered, it can be seen that
the charge flows from the capacitor to the source when the
dielectric is being removed. A fraction of the energy
stored in the capacitor is spent on heating the leads that
connect the capacitor with the source of potential, while
still another fraction goes into the source. Note that re-
moving the dielectric from the capacitor requires perform-
ing mechanical work, which must be included in the
general energy balance. It is expedient, for the sake of
comparison, to consider the reverse process, the introduc-
tion of a dielectric into the capacitor. Since in this case
the capacitance of the capacitor grows, the energy grows,
too. This growth is provided by the energy stored in the
source (a DC source), which supplies the capacitor with
the necessary charge as the capacitance is increased.

3.39. The problem can be related to Problem 3.38. The
answer can be obtained from the general formula for the
energy slored in a charged capacitor: W = Q*2C. When
the capacitor is submerged into liquid dielectric, its ca-
pacitance increases, with the result that the energy stored
by the capacitor decreases, since the charge on it re-
mains unchanged. Thus, if the liquid dielectric is “sucked”
into the capacitor, the capacitor-dielectric system goes
over to a sltate with a lower energy. This process con-
tinues until the decrease in energy is compensated for by
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the increase in the potential energy of the layer of dielec-
tric between the plates in the gravitation field of the
earth. It must also be noted that work is done against
viscosity forces when the capacitor is drawn oul or sub-
merged into the dielectric. After the capacitor is sub-
merged into Lthe dielectric, ils capacitance will increase,
while the potential difference between the plates will
drop. The electric field strength, which is the same in the
parts with and withoul the dielectric, decreases too, while
the electric displacement proves to be greater by a factor
of e in the part with the dielectric as compared to the
value in the part without the dielectric.

3.40. The problem can be related to Problem 3.38. There
we found that into the general energy balance one must
include the energy flow through the current source, which
uses a fraction of its energy to increase the energy stored
in the capacitor when the capacitor is submerged into
the dielectric. The liquid dielectric must be “sucked” into
the capacitor, just as in the previous problem. The effect
of the capacitor’s field on the dielectric can also be taken
into account by considering the polarization of the di-
electric. As a result of this process, each volume element of
the dielectric becomes a dipole and is pulled into the field
at the edge of the capacitor. The strength of this field is
higher than that in the dielectric at a certain distance
from the plates.

3.41. When the cube is compressed in the transverse di-
rection, it is stretched in the longitudinal direction, as a
result of which the upper face becomes negatively charged
and the lower face becomes positively charged.

3.42. Formally, such points are determined by the ex-
pression

e = D/e,F.

Obviously, at the point where /£ = 0 and D 5= 0 (point
0), the dielectric constant is formally equal to infinity,
while at points where D = 0 and E == 0 it is zero (poinls
3 and 6). Of course, such values of & are of a purely for-
mal nature.

3.43. 1If I is the length of the plates of the capacitor in
the system where the capacilor isat rest, in a system where
the capacitor is moving with a velocity » this length is

1Y 1 — v¥c2. Since the transverse dimensionsof the plates
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do not change, the area ratio is also 1/)1 — 0?2
Since the charge on the capacitor remains unchanged,
the surface charge density increases, with the result that

EIE, =1V 1 — v¥ce.

4. Direct Current

4.1. The two conductors, 7-3-5 and 2-4-6, have different
potentials, with the result that when key K is closed, a
current will flow from & to 4, while the currents passing
through the resistors will flow from 7 to 3, from 5 to 3,
from 4 to 6, and from 4 to 2. The closing of the key leads
to an increase in the current flowing through the ammeter.
If the resistances of the conductors 7-3-5, 2-4-6, and
3-4 are extremely low, then the sections 7-2 and 5-6 of
the resistors will be shorted for all practical purposes.
4.2. Prior to closing the key, the circuit consists of two
resistors connected in parallel (the resistance of each re-
sistor being 3R). This means that the total resistance of
the circuit is 1.5R. After the key has been closed, the cir-
cuit consists of two sections connected in series, cach of
which has two resistors connected in parallel. The re-
sistance R’ of each section is given by the formula

1 1 1

R R "2R

and is cqual to 2R/3. The resistance of the entire circuit
is 4R/3. The current measured by the amimeter is higher
than that measured prior to closing the key.
4.3. If R is the resistance of the whole potentiometer
and R is the resistance of the voltmeter, the total resis-
tance of section ab of the potentiometer is
Ry (R/2) R R

vt RZ = ZAFRERY) 2 *

Ry -

The resistance of section bc is equal to R/2. The voltage
applied to the potentiometer will not be distributled even-
ly. Since the resistance of ab is less than that of bc, the
voltage applied to the first section is lower than that ap-
plied to the second. The higher the resistance of the volt-
meter, the closer the readings of the voltmeter are to one-
half of the applied voltage.
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4.4. Since the voltage applied to the “black box™” is sup-
plied by a DC source, it is natural to assume that there
are only resistances inside the “box”. The simplest way
to lower voltage is to use a polentiometer (see the figure
accompanying the answer). However, there is not a sin-
gle circuit employing only resistances that can raise vol-
tage. As the figure ac-
companying the answer
demonstrates, from the

1 {

v - 5 v - ; voltage applied to termi-
[ ) nals 7 and 2 one can al-

v = ‘ "N=" ways “take” a certain

: T g ] » fraction, e.g. 127 V,
i Vv ied

Fig. 4.4 while the 127 V applie

to terminals 3 and 4
will yield the same 127 V
on terminals 7 and 2. The remark (made in the
problem) that concerns the role of the measuring device
is important since a voltmeter, which always has a finite
resistance, redistributes the resistances in the circuit and,
hence, changes the voltages (see Problem 4.3).

4.5. Let us assume, for the sake of simplicity, that the
resistances of the two potentiometers are the same.
When the sliding contact of each polentiomeler is in the
middle, the total resistance of the circuit is R /2, where
R, is the resistance of each potentiometer. If the sliding
contact of the second potentiometer is in the extreme
(left or right) position, we have two resistances, R, and
R/2, connected in parallel (assuming that the wires
have no resistance), so that the total resistance is R =
R/3. The reading of the ammeter proves to be great-
er than when the sliding contact of the second potentio-
meter was in the middle position by a factor of 1.5.
Thus, when the sliding contact of the second potentio-
meter is moved [rom one extreme position to the other,
the readings of the ammeter pass through a minimum.
4.6. If z is the resistance of the potentiometer bhetween
point a and the sliding contact, the total resistance be-
tween a and the sliding contact is ra/ (r + xz), while the
resistance of the entire circuit is R — z 4 rz/(r + x).
The current supplied by the DC source is

I U,
- R—z-frz/(r+2)
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The potential difference between the sliding contact and
point a is
U— Ugrz . Ugrz
(R—=z)(r+z)+rx =~ Rx—2z®-+Rr

The current passing through the ammeter is

U,r
L= am (4.6.1)
To find the extremum, we take the derivative
I, —R+2 7 )
E‘-‘—_Uor [m]. (4.6.2)

Nullifying (4.6.2) yields
z = R/2. (4.6.3)

If we substitute (4.6.3) into (4.6.1) we find the minimal
current:

_ U

R(r+R/A)

Thus, as the sliding contact is moved, the current
through the ammeter passes through a minimum, and the

Imin:

0 02 04 06 0B 10 xR
Fig. 4.6

smaller the r the deeper the minimum. At z = 0 and
z = R, a current of I, = U,/R passes through the am-
meter. The ratio of Iy, to Imax is equal to (r/R) (1 +
r/R)-1. The I,/Iy.. vs. z/R curves for several values
of r/R are shown in the figure accompanying the answer.
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4.7. The cxact value of &, can be determined if one mea-
sures exactly the potential difference between points a
and b provided that the current passing through the
source in question is zero. This can be achieved by selecting
a proper ratio of resistances between points a and b and
points b and c using the resistance box. Knowing the re-
sistance R between points ¢ and b and the current I,
measured by the ammeter, we find the sought emf:

€. = IR.

4.8. Since the currents in the resistors R, and R, are
the same, we can wrile

UAa/Rl = UGB/RQ.’

The charges on capacitors connected in series are the
same, which means that

UA bcl = Ubacz-
Since

UAa/UaB = RI/B27 UAb/UbB = Czlclv Upo = UAb,

UaB = UbB’
we have
RI/R2 = szcl.

The resistances and capacitances are in inverse ratio.
Just as in Problem 3.27, where a DC source generates a
potential difference between points A and B, the solution
holds true only if the (active) resistances of the capacitors
are infinitely large.
4.9. The current remains unchanged on the entire
section from one junction to another. A junction is a point
in a circuit where more than three conductors meet. There
are seven such sections in the figure accompanying
the problem. If there are n junctions in a circuit, then
Kirchhofi’s first law yields » — 1 independent equations.
There are four junctions in the circuit in question (Z,
4, 5 and 7). Thus, to determine seven currents we are
lacking four equations, which Kirchhoff’'s second law
will yield. The simplest way to employ Kirchhoff's sec-
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ond law is to use loops that do not overlap, namely,
1-2-3-4-1, 1-4-5-1, 1-5-7-1, and 5-6-7-5.

4.10. There are eight junctions in the circuit. Since Kir-
chhoff’s first law yields only n — 1 independent equations
for n junctions, we have seven such
equations. If the circuit is trans- * ¢
formed onto a plane (see the figure
accompanying the answer), there are
five nonoverlapping loops, while the

loop 1-4-8-5-1 overlaps all other loops

and therefore can be obtained from " {
these. ! I
4.11. The current flowing in the Fig. 4.10
circuit is I = &/(R + r). The power

output in the external circuit is

P=1I2R=¢g?

R

The maximal power output can be found from the condi-
tion dP/dR = 0, or

AP ey (RED—2(R+NR _
iR = ¢ GEDT =

whence R = r. The fact that the resistances are equal
means that the power outputs must be equal, too:

I'r = I’R.

Hence, the efficiency is equal to 0.5.
4.12. The current is maximal when the circuit is shorted,
or when the external resistance is zero:

I, = &

Thus, in both cases the ratio of the emf to the internal
resistance is the same.

Maximal useful power output (the power output of Lhe
external resistance) is achieved when the exernal resistance
is made equal to the internal resistance (see Lhe answer
to Problem 4.11), that is, when the current is onc-half
the maximal current. This power output is

g g
P=p=17-

Since the ratio &/r is the same in both cases, a double
useful power output is achieved at a double electromotive
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force (for equal currents). Note that the internal resistance
of the DC source must also be doubled if we want the
ralio to remain unchanged.

4.13. 1If in one position of the sliding contact the rheo-
stat has a resistance R, and in the other, a resistance
R,, the current is &/(R, + r) in the first case and
&/ (R, + r) in the other. Correspondingly, the power out-
put in the exlernal circuit (the same in both cases) is

p__ &R &R,

(Ri+12 7 (Ret1)2 °

Dividing this expression by &2 and solving for r, we find
that

r=VRR,.

By hypothesis, in one case R, = xR and in the other,
R, = (1 — z) R. Whence

r=RVz(1—ux).

4.14. The likely circuit, apparently, consists of a combi-
nation of cells connected in parallel and in series. There
are Lwo possibilities here: several parallel groups of cells
connected in series or several in-series groups of cells con-

nected in parallel. First,

& & & & En it can be shown that the
-l|—-||—h—1l--|| ------- Ilﬂ two variants are equiva-
R lent. Indeed, in the first
"*I-;;||"b;“|"c:‘|""“"|“ variant, the potentials
e at the points a,, a,, a,,
Hh:'h:h?l 'l—‘ ® etc. coincide, i.(la. =
--------------- Usy = Uyy = Ugy=...;
_||-2:¢|-3"-'||-5'3|| ------- |}-4 the same is true of the

potentials at the points
by, b,, by, etc., i.e.
Ub, = Ub' = Ub:, = ..
This line of reasoning can be continued. The respective
points can be interconnected, and the entire circuit will
be transformed into the second variant. Suppose the over-
all number of cells is V. We connect these cells in such a
manner that groups of z cells that form m = N/n parallel
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groups are connected in series. In this case the current in
the external circuit is

I-- &n &ENn

R-+rn/fm — RN-+rn? °

The power outpul in the external circuil is

) 2R 2 n?
P-—=I’R-=(EN)2R RN T -
To find the maximal value, we nullify the derivative of
P with respect to n:
P 2€N%n

El-— W(RN'—I'N?‘):O.

Whence
n= VRNJr. (4.14.1)

But Lhis does not solve the problem completely. The num-
ber n should be one of the cofactors of N. To find a practic-
al value of n, we must compare the power outputs for
two values of n that are closest to the one given by
(4.14.1), that is, one must be smaliler than the calculated
value and the other must be greater, and yet the two must
be cofaclors of N. Here is an example. Suppose N =
400, R =16 Q and r =9 Q. The calculated value is

400 X 16
n— ]/—9— —26.7.

The closest cofactors of NV are 25 and 40. In this example
the greater power output is at n = 25. Thus, the circuit
consists of 16 parallel groups of 25 cells connected in
series in cach group.

4.15. Since the displacement current is defined as

dD
[(lis =8 TR

after performing certain manipulations we can write
ge dU _ dQ

Toe== T =3
where Q is the charge on the capacitor. Thus, the d}splgce-
ment current may be made constant over a definite time
interval if the capacitor is charged (or dlscharged)‘ by
a direct current. For this in the circuit of the capacitor
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being charged we must have a device that restricts the
current flowing through it within broad voltage limits
(Figure (a)). A diode operating in the saturation rpoc!e
may serve as such a device. For the case of a thex:mlor}m
valve (or diode) the appropriate circuit is shown in Fl_g—
ure (b), while for the case of a semiconductor diode the cir-

ﬂ_ C_—Té ﬂ_ C=L

Current limiter

(a) (b)

Fig. 4.15

cuit is shown in Figure (¢). The diode is introduced into
the circuit in the cut-off direction, and the voltage across
the diode is

Ud=go'— UC.

As long as Uy remains within the saturation region, the
current through the diode (and, hence, the charging cur-
rent) remains constant. The displacement current remains
constant in the process. Afler a cerlain Llime interval
has elapsed (the Jower the charging current the longer the
interval), the charging current rapidly falls off to zero.
The time dependence of the displacement current is illu-
strated schematically in Figure (d).

4.16. At each moment of time the capacilor voltage is
equal to the potential drop across the resistor:

U = IBo
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Bearing in mind that U = Q/C and I = —dQ/dt (the

minus sign shows that the capacitor’s charge decrcases)
we get

y

Q0 _ _pdw
[ R dt ?
or
1 1 \
fo—(’=_h,—c at. (4.16.1)

Integrating (4.16.1) from the initial charge Q, to Q and
from the initial moment ¢ = 0 to time ¢, we get

Q=Q,exp (— Ftc—) =U,C exp (—'7}%-)-

Accordingly, the current varies with time as follows:
I=TI,exp (—#) (4.16.2)

with I, = Uy/R. Taking logs, we can wrile (4.16.2) as
follows

Inf=Inl— (—137) t.

Thus, the time dependence of In I is represented by a
straight line with a nega-

tive slope, whose absolute .

value is 1/RC. The resist-

ance R determines the

current at the first moment

of discharge and the initial

capacitor voltage, which is

equal to the emf of the o [
source. The value of R de- \
termined in this manner
and the slope of the straight
line fix the value of C.
4.17. As shown in the answer to Problem 4.16, the
discharge current varies with time as

Fig. 4.16

I—:Ioexp(—— or In/=Inl,— (%C—) t.

7e)
RC )’

Initially, i.c. at ¢ = 0, both currents are the same (sep
the figure accompanying the problem). For a fixed capaci-
tance C this is possible if the other two parameters, U
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and R, change simultaneously. Since by hypothesis only
one parameter changes, we conclude that the capacilance
C varies. The fact that the slope of the straight line repre-
senting the In I vs. t dependence decreases means thal the
capacitance C increases.
4.18. The time variation of the current proceeds as fol-
lows:
1

Inl-=1In7l,— (7?(‘) t.
The fact that the two straight lines, 7 and 2, are parallel
indicates that the product RC must be constant. Since
by hypothesis the discharge processes differ only in the
value of one parameter, both R and C remain constant.
What is different is the initial capacitor voltage, and since
for straight line 7 the initial current is higher than for
straight line 2, so is the initial capacitor voltage.
4.19. The current flowing through the resistor with re-
sistance R will generate during a time interval d¢ the fol-
lowing amount of heat:

dg = I*Rdt.

The time variation of the discharge current of the ca-
pacitor is

t
I:IOexp ('—W) .
Thus,
dg=1I;R exp ( -T:i%) dt.

Integrating this expression with respect to ¢ from ¢ =
0 to t = oo, we get

q = IRC/2. (4.19 1)
At the first moment the discharge current is

I, = U,/R. (4.19.2)

Substituting (4.19.2) into (4.19.1), we obtain the initial
energy stored by the charged capacitor:

q = UXC/2.

4.20. According to Kirchhofi’s second law, at each mo-
ment of time the emf of the DC source is equal to the sum
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of the potential drop across the resistor and the capacitor
voltage:

&€=1R+ U.
Bearing in mind that I = dQ/d¢ and U = Q/C, we get
dQ Q daQ 1
€—R—=1+ =, or 0—%C = —Re dt.

Integration from Q = 010 Q and from ¢ = O to ¢ and ap-
propriate transformations yield

0-sc [t~ o ()]

whence

I:%’e"p( 7z ) =Toexp (— RTP)

The amount of heat generated by the current in the re-
sistor I? in the course of df is

dg=I?R dt=I*Rexp (_%%) ,

Integration from t = 0 to t = oo yields

q = I*R*C/2 = §*C/2.

The same amount of energy is stored by the capacitor
when the latter is charged to a voltage equal to the
source’s emf. The total energy used up by the source,

S?;’I dt =&, S o~ (RO ¢,

0 0

is equal to &C, which is the sum of two equal quanti-
ties &2C/2.

4.21. The energy stored by a charged capacitor can be
written in the form

Wy = Q¥2C.

After the second (uncharged) capacitor is connected to
the first, the total charge does not change while the capac-
itance doubles. Thus, the total energy stored by this
system becomes

= Q¥4C,
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which is one-half of the initial energy. So where did the
other half go to? As the charge is redistributed between
the two capacitors, a current flows through the conductors
connecting them and gencrales heal. In addition, there is
always a magnetic field around a conductor with current,
and this magnetic field carries energy, just as an electric
field does. If the resistance of the conductors is low (zero
in the case of superconductors), the difference between
the initial and the final energy will go Lo the magnetic
field. Eventually the second capacitor will become fully
charged while the first capacitor will become completely
discharged and the current will cease. Then the second
capacitor will begin to discharge, and charge will flow
to the first capacitor. This process will continue, that is,
there will appear eleclromagnetic oscillalions in which
the energy will alternate between that of the electric field
and that of the magnetic.

4.22. For an electron that is inside the disk al a distance
r fromn the axis to move along a circle, there should be a
force pulling it to the axis. According to Newton’s
second law,

I = mor.

This force is gencrated by a radial electric field caused by
the redistribution of the electrons in the disk and is such
that the force acting on the electron is

I' = el = mo?r.

If we substitute —d¢/dt for £ and integrate {rom ¢,
to ¢, and from O to R, where R is the radius of the disk,
we get

¢ do w? ¢
m
S—d-l—- __—-—-—e—S"dr.
@y 0
As a resull, we get the potential difference between the
center of the disk and the edge:

U:(Pi—(Pzz—zef‘_:—z—e—, (4.22.1)

where v is the linear velocily of points at the edge of the
disk. Theoretically formula (4.22.1) can be used to deter-
mine the electron’s charge-to-mass ratio. But actually
this constitules a problem, as shown by an estimate of
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the potential difference between the axis and the edge.
The electron charge is 1.6 X 10~ C and the electron
mass is 9.1 X 1073 kg. We set the electron linear veloci-
ty on the edge at 300 m/s. The potential difference then
proves to be less than 10 V. I{ is extremely difficult
to measure such a quantity in such a rotating system.
4.23. Moving logether with the cylinder, the electrons
in the wire have a momentum mv each. When the cylin-
der is braked, the electrons continue to move, but the
generaled potential difference creates a braking electric
field of strength £. The force acting on every electron in
the wire is

I = elU/l,
with U the instantaneous potential difference. According
to Newton’s second law,
t)
e

0

where Amv is the momentum lost by an electron during
the entire braking timne, which quantity is equal to the
initial momentum mv. The charge-to-mass ratio for the
electron is then

e vl

0o
SUdt
0

The integral in the denominator can be evaluated by cal-
culating the area under the voltage oscillogram.

4.24. 'The heating of the conductor will result in the elec-
tron diffusing into the neighborhood of section ab,
with the potential of the conductor somewhat increasing.
The current flowing in the conductor will have to overcome
a potential barrier at point a. This requires additional
energy, which will be taken from the metal. On the other
hand, when passing through the conductor at point 0,
the current goes Lo a region with a lower potential, and
in this place energy will be released to the metal. As a re-
sult, the point where the temperature is al a maximum
will shift in the direction of current flow.

4.25. Prior Lo cooling, the resistance of the wire was the
same over the enlire length of the wire (precisely, the
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resistivity was the same at all points of the wire). When
the fan is switched on, the resistance of the section that is
being cooled will lower. This leads to a redistribution of
the potential between the cooled and uncooled sections,
with the greater voltage applied to Lhe latter section, as a
result of which ils temperature increases. This phenome-
non is enhanced by the fact that the resistance of the un-
cooled section somewhat grows with temperature, which
leads to a still greater inhomogeneity in the distribution
of the potential in both sections.

4.26. The resistances of bulbs with the same raied volt-
age are ininverse proportion to the rated wattages. Hence,
the resistance of the bulb with the lower wattage is six
times the resistance of the bulb with the higher wattage.
When the bulbs are connected in series with the DC
source, the current isthe same and six-sevenths of the total
voltage of 220 V, or 189 V, is applied to the first (25 W)
bulb and one-seventh, to the second (150 W) bulb. Actu-
ally the difference is still greater hecause the resistance
of the first bulb will increase due to overhealing, while
that of the second will decrease. Hence, the 25-W bulb
must burn out.

4.27. Anincrease in voltage will lead to an increase in
the currents passing through the conductor and semicon-
ductor, and this will lead to an increase in temperature
of both. As a result the resistance of the conductor will
increase and that of the semiconductor will decrease.
Hence, the current through the semiconductor will increase
greater than in proportion to the voltage, while the cur-
rent through the conductor will increase lesser than in
proportion to the applied voltage, with the result that
the ammeter in the semiconductor circuit will register a
higher current than the ammeter in the conductor circuit.
4.28. Prior to an increase in voltage, the resistances of
the semiconductor and the conductor were equal. When
the voltage is increased, the current in the circuit in-
creases, too, and so does the temperatures of the semicon-
ductor and conductor. This leads to a drop in the resis-
tance of the semiconductor and an increase in the resis-
tance of the conductor. The voltage between the semi-
conductor and conductor will redistribute in such a man-
ner that the voltmeler connected to the conductor will
register a higher voltage than the voltmeter connected to
the semiconductor.
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4.29. Theclectrons leaving the filament, or cathode, cre-
ate a negalive space charge whose field does not let
all the emitted electrons into the region. According to the
Child-Langmuir theory developed for parallel plane elec-
trodes on the assumption that the initial velocity of Lhe
electrons is zero, the current density between the elec-
trodes is

. 4V 2e, ]/_r_ U?/e
J= ] m 2

(the threc-halves power law). Tlere ¢ and m are Lhe elec-
tron charge and eleclron mass, U is Lhe voltage drop ac-
ross the electrodes, and d is the distance between the elec~
trodes. On the current-voltage characteristic, the initial
segment of the curve agrees with the three-halves power
law. Then, as the electron cloud is dissipated, the current
gradually reaches a plateau and saturation sets in, with
the saturation current heing the total flux of electrons
thal the cathode can deliver at a given temperature. The
temperature dependence of the current densily is given
by the Richardson-Dushman equation

i AT ey (= ).

The quantity P in the numerator of the exponent is the
so-called work function, or the work that an electron must
do to leave the metal. The other quantitiesin the equa-
tion are as follows: 7 the thermodynamic temperature, %
the Boltzmann constant, A4’ = 6.02 X 10> A/m?.K? is
a constant that is a combination of universal constants.
The difference in the curves in the figure accompanying
the problem lies in the temperature of the cathode, which
is higher for curve 2.

4.3'. When thermoclectric current flows from Lhe cathode
to the anode, the electrons leaving the cathode cavry
away an energy required for overcoming the polential
barrier that exists at the metal-vacuum interface (the work
function of the electrons), with the result that the cath-
ode cools off. To maintain a constant cathode Lemperature,
the filament current must be increased.

4.31. When the potential difference between the elec-
trodesisnil, the concentration of positive and negative ions
(cations and anions) is Lhe same in practically the entire
volume. When an external vollage is applied, a current
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generated by the motions of cations to the cathode and
anions to the anode begins to flow in the electrolyte. As
a result, the regions near the elecirodes prove to be
depleted of ions whose sign is that of the electrode. Cati-
ons leave the anode and anions leave the cathode. For
this reason, near the anode an excess of negative charge is
formed, while an excess of positive charge is formed in
the region near the cathode. All this leads to a distortion
in the electric field. The enhanced field near the electrodes
imparts an enhanced velocity to the ions. This ensures
the flow of current under lower charge carrier concentra-
tions.

4.32. Thesign of the volume charge is determined by the
direction of convexity of the U vs. z curve.* The volume
charge is positive where the curve is convex upward and
negative where the curve is convex downward, while the
volume charge is nil where the U vs. £ dependence is re-
presented by a straight line. Hence, the entire region be-
tween the cathode and the anode is divided, within the
first approximation (i.e. ignoring certain details), into
the cathode space (from point 0 to point / in the figure
accompanying the problem) with a surplus positive charge,
the Faraday dark space (from point I to point 2)
with a negative charge, and the region of the “positive
column” (from point 2 to point 3), which constitutes a
plasma with practically equal concentrations of elec-
trons and positive ions and, hence, with a net charge
that is practically nil.

* Sce Problems 3.28 and 3.29.

4.33. The conduction-current, density is given by the
formula

je 2 RyU Ly, (4.33.1)
h

where ¢ is the magnitude (without taking into account
the sign) of the elementary charge (the electron charge),
ny the concentration of the given type of charge carriers,
u, the average directional velocity of the carriers, and
Zy the charge number, or valence, of the carriers. For
an electron Z = —1, while for a positive doubly charged
ion (say, Het+) Z = +2. Eleciron velocities exceed ion
velocities by a factor of 10 or even 100, with the result that
even at equal concentrations the electron current is
much stronger than the ion current. Since in an electric
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field electrons and ions move in opposite direclions, we
can assume that the clectron velocity is negalive if the
ion velocity is set positive. Since the number Z for elec-
trons is negalive, the signs of the products in (4.33.1)
coincide, with the result that the ammeter in the gas dis-
charge gap circuit will register the total current of
electrons and ions.

4.34. As the particle moves from the anode Lo the Fara-
day cylinder, the ficld in the region between A and F
constantly changes. When the particle leaves the anode
(through the aperture) and is moving toward the Faraday

A

—— tl

F A ty F A ty F

e
O e

Fig. 4.34

cylinder, it induces positive charges on these electrodes,
and the magnitude of these charges constantly changes.
The densily of these charges on the anode decreases while
that on the Faraday cylinder increases (Lhe variation in
the distribution of electric charge for three moments in
time is shown in the figure accompanying the answer).
For this reason, in the region of space between A and I
there appears a continuous displacement current, which
means that an exact replica of this current appears in the
circuit. The current in the circuit can be graphically re-
presented as a consequence of the fact that in approach-
ing the Faraday cylinder the particle repels, so to say,
the electrons which, in effect, move toward the anode
through the measuring device G. Thus, the current in the
circuit exists during the entire time of motion of the par-
ticle between the anode and the Faraday cylinder, as
shown in Figure (e) accompanying the problem.

4.35. If two metals are brought into contact, the limiting
energies of the electrons will establish themselves al a
common Jevel (the common Fermi level; sce the figure
accompanying (he answer). The difference between the
height of a potential barrier and the Fermi level deter-
mines the external work function e. The difference between
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the two work funclions (for the two barriers) is equal to
the external contact potential difference. To transfer an
electron from the surface of metal 2 to the surface of
metal I requires performing an amount of work equal Lo
eA¢. The distance belween

L the levels of minimal eleclron

ey, ey, . F

energy in the metals deter-

.= A _—lw, - - mines theinternal contact po-
- h W tential difference AWy, Ac-
— cording to the quantum theory

Fig. 4.35 of metals, the Fermi level

at 0 K is pinned at (h%/2m) %
(3n/7)*/?, where h is the Planck constant, m the electron
mass, and n the clectron concentlration in a metal.
Hence, the concentration of electrons in metal 7 is higher.
4.36. The concentration of electrons whose energy ranges
from Wilo W -- AW is
dn = [ (W) dW = CWAdW,

in accordance with Eq. (4.36.1). Integraling this expres-
sion from zero Lo Lhe limiting energy, we obtain the con-
centration of electrons in the entire energy range:
W
n=c | wieaw -
0

2

—CWil,

Hence, Wy oc n?/3. As is proved in the quantum theory
of metals, Wy is given by the following formula (wilh
due regard for universal constants):
h? 3n \2/3
Wp= 2m (T) .
4.37. The clectrical conduclivity (specilic conductance)
of a semiconductor depends on temperature according Lo
the following law:
G- 0y CX]p (—i) or Ino=Ing v
Yo | rr ] - 0 kT
where W is the width of the forbidden band. This law im-
plies that the wider the forbidden band, the steeper the
straight line representing the In o vs. 7' dependence.
Hence, semiconduclor 7 has a wider forbidden band.
4.38. Since the upper sections of the curves for the two
semiconductors coincide and the slopes of the lower sec-
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tions are smaller than those of the upper, the intrinsic
conduclivilies are the same. Also, since the lower sections
of the curves slope in the same manner (i.e. the slopes are
equal), the width of the forbidden band for the impuri-
ties is the same for both semiconductors. Thus, these dia-
grams can be interpreted as a characteristic of impurity
semiconductors with different concentrations of the same
impurities. For a fixed temperature, a higher conductivity
corresponds to a higher located characteristic, Z, and,
hence, a higher concentration of impurities.

4.39. The diffusion of electrons from an n-type semicon-
ductor into a p-type one and of holes from the p-type
semiconductor to the n-type one leads to the appearance
of a positive potential on the n-type semiconductor
(the left branch of curve 0) and a negative potential on the
p-ltype semiconductor (the right branch of the same
curve). If we now apply a positive potential to the n-type
semiconductor and a negative potential to the p-type,
the potential difference between the two semiconductors
will increase (curve ), whence the boundary between the
two semiconductors is depleted of charge carries as a re-
sult of electrons bheing drained to the n-type semiconduc-
tor and holes, to the p-type. Such a direction of the po-
tential difference is the cut-off one. When the exlernal
voltage is applied in the reverse direction (curve 2), the
potential difference lowers, and it proves easier for the
electrons to move to the p-type semiconductor and the
holes, to the n-type. This direction is the conducting one.
4.40. Every semiconductor possesses intrinsic conduc-
tion in addition to extrinsic (or impurity) conduction. In-
trinsic conduction is caused by the transfer of electrons
from the valence band to the conduction band and by
simultancous formation of holes in the valence band. In-
trinsic conduction is pf a mixed nature for this reason, and
because of this the n-type semiconductor carries a small
number of holes while the p-type semiconductor carrics a
small number of elecirons. When a voltage is applied in
the cut-off direction, these charge carriers constitute
the so-called reverse current. As the temperature of a
semiconductor diode isincreased, the electron and hole
concentrations grow, as a result of which conductivity in
the cut-off dircclion grows, too. The reverse current
reaches a plaleau when practically all the “alien” charge
carriers (holes in the n-type semiconductor and electronsin
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the p-type) participate. Usually this current is several or-
ders of magnitude less than the direct current, with the
plateau reached at relatively high voltages. The direct
current grows with voltage very rapidly, since as the vol-
tage is increased, it becomes easier for the charge carriers
to pass through the junction.

4.41. Let us suppose that there is a small deviation from
the state with o = 1. If o drops at point @, the number of
electrons impinging on the surface is smaller than the
number of electrons leaving the surface, with the surface
acquiring a negative potential, which brings down o
still further. And this leads to a further increase in the
negative potential. The process continues until the cur-
rent of primary electrons becomes totally cut off. If at
the same point the value of o increases somewhat, the
surface acquires a positive potential, the velocity of
the electrons increases, and the current continues to
grow, which leads to an increase in o, up to the maxi-
mum on the curve, and then to point b, where ¢ = 1,
just as at point a. Similar reasoning leads us to the con-
clusion that small variations in ¢ at point b change the
potential of the surface in such a way that o returns to
its initial value 0 = 1. Thus, point a corresponds to an
unstable state, while point b corresponds to a stable state.
For a small deviation from the state of equilibrium
corresponding to point a, the surface acquires a potential
that either completely cuts off the current of the primary
electrons or corresponds to that at point b.

4.42. The reflected electrons retain practically all their
initial energy and, hence, correspond to curve 2 in the
figure accompanying "the problem. Secondary electrons,
on the other hand, are freed from the solid bombarded
with the primary electrons at the expense of the energy
of the primary electrons, and this energy is distributed
between the emitted electrons. The energy of the latter
is, as a rule, considerably less than that of the primary
electrons. Moreover, while all the reflected electrons have
velocities that are concentrated within a narrow interval
and have energies close to those of the primary electrons,
the secondary electrons form a broad spectrum of veloci-
ties. The “true” secondary electrons are represented by
curve I in the figure accompanying the problem.
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5. Electromagnetism

5.1. If weuse theright-hand screw rule, we will find that
both in region I and in region I17 the directions of the
magnetic induction veclors coincide and the resultaot
induction may vanish only at infinity. The same rule
shows that only in region I7 can the magnetic induction
veclors point in opposile dircctions (i.e. the induction
created by the two currents), with the resultant induc-
tion vanishing somewhere inside 7. If a is the distance se-
parating the conductors, then the distance z from a con-
ductor carrying the current I, to the point where the induc-
tion is zero can be found from the equation

Roitly _ _ pobla
2nx 25t (a— ) :
Hence,
1
R 2
* 1,41,

5.2. If we use the right-hand screw rule, we will es-
tablish that the magnetic induction can vanish only in
sectors [ and III. If y is the distance from a certain point
on the conductor carrying

the current I, to the point I,
where the magunetic induction

is zero, and x is the distance |
from this point to the con-

ductor carrying the current N T,
I,, then

Mot 14 . Woltd o

2y nr
Hence, the locus of poinls Fig. 5.2

where the magnetic induction

is zero is the straight line that passes through the point
ol intersection ol the conductors and whose equation is
y = (I/I,) .

5.3. The magnetic inductions generated by a straight
conductor with a current and a circular conductor are,
respectively,

ot 1

B Mol and B=
nr 2r
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In the case corresponding to Figure (b), the directions of
the (wo induction vectors coincide, while in the case cor-
responding to Figure (c) they are opposite. Thus,

I - I 1
e ]

2r
gt 1
b L (1= ),
whence
B, =2l p, 1328, B,="_1B,=0.088,

5.4. If the distance from the middle conductor to each

of the other two conductors and to the point where we

S wish to determine the field

/" is a, the magnetic field gen-
crated by cach outer conduc-
tor at Lhis point is

. I

I sa V2

Using the right-hand screw
rule, we lind that the vectors
of the magnetic fields gen-
erated by the outer conductors
are directed at an angle of Y0°, so thal the resultant mag-
netlic field strength is

Hyp— VI =,

with the vector representing this resultant directed paral-
lel to the line passing through the conductors. Employing
the same rule, we will find that the magnetic field Hyg
generaled by the middle conductor points in the dircc-
tion opposile to the onc of the resultant H, ,, with Hg==
I/2na, that is, | Hy ] == | H,,|. Thus, the resultant
of all three fields is zero.

5.5. A magnetic induclion vector is always directed
along a tangent to a line of force (for each of the four con-
ductors the line of force is a circle in the plane of the draw-
ing). As the figure accompanying the answer shows, the
magnetic inductions generated by currents 7, and I, are
directed along the diagounal of the square from the conduc-
tor carrying I, to the conductor carrying I,. Reasoning
along the same line, we conclude that the magnelic in-
duclions gencrated by currents I, and I, arc direcled
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along the diagonal of the square from the conductor car-
rying I Lo the conductor carrying I,. The resultant induc-
tion ol the magnelic field ge- —

nerated by all four currents, 7 x~ \\\
or the geometric sum of the // 1 // \ \
magnelic  induction  vectlors . | } L

of the four currents, lies in oA /
the planc of the drawing and > %k”\\/
points {rom right to left. V] \\—//\\
5.6. The presence of a maxi- ( o | Vo

mum in the middle between T I 4 /‘
the conductors suggests that AN v i
the currents in the conductors e
arc flowing in opposite direc- Fig. 5.5

tions and that, the currents P

are equal in magnitude. Al- o \

lowing for the direction of \ >/

the induction vector atl point (’ N\ X
M and employing the right- \® )

hand screw rule (see the figure ~—7
accompanying the answer), Fig. 5.6

we conclude that in the
upper conductor the current is directed toward the
reader and in the lower, away from the reader.
5.7. At the point that liesin the
middle between the conductors the
induction is zero, which means
that both currents flow in the same
dircction. Employing the right-
hand screw rule, we can determine
the direction of the magnetic in-
duction vector in the region to the
right of the conductors for both
possible directions of current. As
the figure accompanying the prob-
lem shows, the induction vector Lo
the right of the conductors is direct-
Fig. 5.7 e¢d upward. Hence, the currents
are flowing toward the reader (see
the figure accompanying the answer). At a distance z
from point M the induction is

B— Hotd x

T4 (3T
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The derivative

Al )T

vanishes at £ = a/2. It is at this distance that B is maxi-
mal, with By . == poul/na.

5.8. The induction in the middle of a very long solenoid
depends only on the number of ampere-turns per unit
length of solenoid. Suppose that we have two very long,

similar solenoids with equal ampere-turns per unit length
and that these solenoids are placed far apart. We denote
the induction in the middle of a solenoid by By, and that
at an end face, by Be . Let us bring these two solenoids
together in such a manner thal the directions of their
magnetic inductions coincide and that the solenoids form
a new long solenoid. At the point where the two solenoids
touch (the right end face of the left solenoid touches the
left end face of the right solenoid), the two induction vec-
tors B, ; add up and form the total field with induction
2B, ;. But this point is simply the middle of the new so-
lenoid, where the induction, as we already know, is Bp,.
Thus, By, = 2B ;.

5.9. Employing the left-hand rule, we will find that the
force acting on the side of the loop parallel to the conduc-
tor and closest to it is directed toward the conductor
while the force acting on the opposite side of the loop pa-
rallel to the conductor and farthest from it is directed
away from the conductor. Since the first force is greater
in magnitude, the loop moves toward the conductor.
Employing the same rule once more, we will see that the
force acting on the upper side of the loop is directed up-
ward while that acting on the lower side of the loop is di-
recled downward. Thus, the forces tend to pull the loop
apart, that is, to increase the arca subtended by the loop.
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This will actually happen if the material of the loop is
elastic.

The answer Lo the question can be obtained from a more
general reasoning. The work done in the process of displac-
ing a loop carrying a current in a magnetic field is 4 =
IAY, where AY is the increment of the magnetic flux
coupled with the loop. The loop tends to move or change
its form in such a manner that the magnetic flux coupled
with it acquires the greatest possible value. The flux is
assumed to be positive if inside the loop it coincides in
direction with the flux created by the current in the loop.
In allowing for the various changes in the flux coupled
with the loop one must take into account the changes that
are due to the changes in the shape of the loop. In the
case at hand the direction of the magnetic flux created by
the current in the straight conductor and that of the mag-
netic flux created by the current in the loop coincide, and
since the induction of the field created by the current in
the straight conductor increases as we move closer to the
conductor, this will lead to a certain displacement of
the loop. The fact that the square loop transforms into a
circle as the loop’s area increases also leads to an in-
crease in both the outer and inner magnetic fluxes.
5.10. Both a torque and a force act on the loop. The di-
rection of the torque is determined by the fact that the
positive normal to the plane of the loop must point in the
direction of the induction of the external field. The right-
hand screw rule is used to determine the positive di-
rection of this normal, which therefore coincides with the
direction of the magnetic field of the loop proper. In ac-
cord with the direction of the current in the loop, the pos-
itive normal points upward. In the external field the loop
turns counterclockwise, with the magnetic field generated
by the current flowing in the loop coinciding in direction
with the external magnetic field. The direction of the force
acting on the loop is determined by the nalure of the
inhomogeneity of the external field. Since a loop carry-
ing a current and placed in an external magnetic field
moves in such a manner that the magnetic flux coupled
with it allains the maximal possible value (in the algeb-
raic sense), when the directions of the exlernal and Lhe
intrinsic flux coincide, the motion occurs in the direc-
tion of the field with the higher induction, which in the
case at hand means from left to right.
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5.41. A similar question has been considered in Problem
5.9. Although in this case no external magnetic flux is
present, the contour may influence the magnitude of
the Mux coupled with it by changing ils shape. Since the
area and, hence, the flux through the contour are maximal
when the contour is in the form of a circle, the magnetic
forces acting on the contour tend to transform the contour
in just this manner. We can arrive al Lhe same conclu-
sion by considering the interaction of two clements of
the contour that are opposite to each other. The currents
that flow in these elements tend Lo move the elements
apart, since they flow in opposite direclions. The col-
lection of all such forces tends to stretch the contour.

5.12. The following force acts on a contour carrying a
current and placed in a nonuniform magnetic field with

o ' ! —r dyp
o R [ R ; g
' 4 e o o e
| I | I I
t | e :
| a | r | [SANG I iy I
e ] l A .
[
(@) to)
Fig. 5.12

the directions of the lines of force of this field coinciding
with those of the field generated by the currenl in the
contour: F—p, 4B
/ : = Pm g,
In the case at hand, the force is determined by the values
of the derivative dB/dr at different points of the field of
the solenoid. The induction of the field of a solenoid of a
finite length is given by the formula* (see Figure (a) ac-
companying the answer)
B:-%—(sin oy — Sin a,). (H.12.1)
After simple Lransformations, the derivative dB/dr can
be written as

((ITB:: 1IN, 1 _ 1

" 2}? e/ 3/2 —_ 273/¢ .

T T,
DB .
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Formula (5.12.2) shows that dB/dr is nonpositive for
r > 0. This means that the force acting on the contour is
attractive (in Figure (a) this force points from right to
left).

Al r = 0 we have dB/dr == 0, with the result that al
point I the force is zero. This also follows from the fact
that point 7 in the middle of the solenoid is the equilib-
rium point of the contour positioned inside the solenoid.
At point 2 (r = a),

dB _ K,GIN, 1 = ‘
O T Ter [ A4/ 1‘]' (5-12.3)

while at point 3 (r = 2a),

dB _ WIN, 1 1
dr T 2r |: (1-F9a*/R2)2 ~ “(A 1 a?/R%)/2 :l (5.12.9)
Comparison of (5.12.3) and (5.12.4) shows that the numer-
ical value of the derivative is greater at point 2 than at
point 3. It can also be verified that at all points outside
the solenoid the attraclive force (if the direction of the
current, in the contour is opposile to that of the current
in the solenoid, the force is repulsive) is smaller than at
an end face of the solenoid, and deccreases as the dis-
tance from the solenoid grows.

Formula (5.412.1) can be obtained in the following manner
(sce Iigure (b) accompanying the answer). The element dx
of the length of the solenoid comtains N, dz turns (with N,
the number of turns per unit length). The induction at point
A generated by the current flowing in these turns is

gt INydz R do
47 22 !

where R dg is the element of length of the turn subtended
by an angle d¢. The projection of dB on the solenoid axis is

B—“—ILV%M?Z cos . (5.12.5)

d

dB, =

The perpendicular component of dB is compensated by the
induction generated by the symmetric elements of the same
turn. Expressing all quantities in terms of angle a and the
solenoid radius R, we get

R R

T r—z=Rtana, dr= -—mda,
Substituting all this into (5.12.5), we find that
dB, = kI Nydgcos o da,
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which yields formula (5.12.1) after we integrate from 0 to

2n with respect to ¢ and from «, to o, with respect to a.
5.13. Iunitially the external magnetic flux coupled with
the contour is zero. In tending to increase this flux, the
contour moves in such a manner that (a) the magnetic mo-
ment vector associated with the contour aligns with the
induction vector of the external field and (b) contour
moves into the region of higher induction after the align-
ment is completed. Under the given directions of the cur-
rents, the induction gencrated by the solenoid is directed
from right to left and the magnetic moment vector of the
contour is directed upward. Thus, the contour rotates
counterclockwise and moves toward the solenoid. If the
direction of current in the contour is opposite to the one
shown in the figure accompanying the problem, the con-
tour rotales clockwise and also moves toward the sole-
noid.
5.14. Contour 2 is in a nonuniform magnelic field. If
the current in this contour flows in the same direction as
the currents in contours / and 3, contour 2 is attracted
to the other two contours. If it is deflected from the
state of equilibrium in some direction, then from this di-
recltion there acls on it an attractive force that is greater
than the other attractive force (since contour 2 is in a
nonuniform magnetic field), and this means that it will
move in that direction and will be drawn closer to the
corresponding contour. If the current in contour 2 flows
in the direction opposite to that of the currents in con-
tours I and 3, then it might seem that contour 2 is in a
state of stable equilibrium, since repulsive forces act
from both directions. But there is another reason for in-
stability. For an arbitrarily small rotation of contour 2
there appears a torque acting on this contour, and this
torque tends to rotate the contour into such a position
in which the direction of the current in contour 2 coin-
cide with that of the currents in contours 7 and 3. When
this process is completed, we again have to deal with the
instability considered in the first case.

Analyzing the behavior of contour 2, we see thal in
both cases the instability manifests itself through a gen-
eral rule, according to which a contour moves in an ex-
ternal field or changes its form in such a manner that the
ma;gnetic flux coupled with the contour acquires maximal
value.
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5.15. The work performed in moving a contour carrying
a current is equal to A =1 (¥, — ¥,). If the flux coupl-
ed with the contour whose position is changed is initial-
ly ¥,, then upon rotating the plane of the contour by
180° this flux becomes —W¥,, upon rotating the plane by
90° it drops to zero, and upon moving the contour whose
position is changed away from the fixed contour the flux
decreases but does not become zero. Thus, in the first
case A, = —2I¥,, in the second 4, = —I¥,, and in the
third A; = —I (¥, — ¥,), where ¥, is the flux coupled
with the contour upon moving the mobile contour away
from the fixed contour. The minus that is present in each
formula shows that the work must be done against the
interaction of the contours.

5.16. The velocity of each particle may be decomposed
into two components, one pointing along the induction
vector, and the other at right angles to the induction vec-
tor. The component directed along the field does not
change since the Lorentz force affects only the component
that is perpendicular to the field. If we denote this latter
component by v, the Lorentz force is

F=ev,B. (5.16.1)

This force, which is perpendicular both to the velocity
of a charged particle and to the induction vector, imparts
a normal acceleration to the particle in question, with
the equation of motion of the particle in the direction
perpendicular to the field being

mvi/R = ev B. (5.16.2)

Combining (5.16.1) with (5.16.2), we can determine the
radius of the circle along which the particle moves and
the time it takes the particle to complete one circle (which
does not depend on the velocity). In the course of the
same time interval, T, the particle also moves along the
field by a distance 2 = v;T, where v is the component
of the velocity along the field. The result is the motion
of the particle along a helical line with radius R and lead
h. Since for an initial velocity v and an angle o the lon-
gitudinal component of the velocity is vy = v cos a
and the transverse component is v, =v sin a, the trajec-
tory of the particle with the larger angle o has a greater
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radius and a smaller lead of the helical line.
5.17. An electron accelerated by a potential difference
U7 acquires kinetic energy

mv?/2 = el. (5.17.1)

The force acting on the electron in a magnetic field is the
L.orentz force

F = evB,

which makes the electron move along a citcular arc whose
radius is R, so that, according to Newton’s second law,

m¥/R = evB. (5.17.2)

The induction of the magnetic field generated by the cur-
rent in the solenoid is

B = p N, (5.17.3)

Excluding velocity v from Egs. (5.17.1) and (5.17.2) and
substituting the value of B from (5.17.3), we find the
sought for charge-to-mass ratio:

e 2U

‘m ~ pI2NIR®

5.18. The electric field vector inside the capacitor is di-
rected at right angles to the capacitor plates. The force
F, = QE = QU/l with which the electric field acts on
the particle is directed in the same manner. A force equal
in magnitude to F, but pointing in the opposite direc-
tion acts on the particle from the magnetic field. Accord-
ing to the Lorentz formula, this force is Fp = QuB
and is directed at right angles to the velocity of the par-
ticle and the magnetic induction vector. This means that
the induction vector must be perpendicular to the electric
field. As we have said earlier, the two forces must be
equal: QU/l = QuB, or

B = U/(l). (5.18.1)

The velocity the particle acquired in an electric field
can be found by employing the energy conservation law:

mi¥/2 = QU,.
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Solving this for v and substituting the result into (5.18.1),

we finally obtain
U m
B=TV w0 -

5.19. According to the Lorentz formula, charges moving
in a magnetic field are subjected to a force whose direction
is determined via the left-hand rule, where the positive
direction of a current is defined in the “electrical-engi-
neering” sense, that is, the direction in which the positive
charges move in the conductor. Therefore, irrespective of
the sign of the charge carriers, the forces acting on these
carriers point in the same direction. In the case illustrat-
ed in the figure accompanying the problem, the charges
move downward. In a metal or an rn-type semiconduc-
tor, where electrons are the charge carriers, this will re-
sult in a depletion of charge carriers in the region about
point a; the region will acquire a positive potential. In
the case of a p-lype semiconductor the sign of the charge
is obviously minus.

5.20. According to Lenz's law, the induced current is in
such a direction as to oppose the change in the magnetic
field that produces it (that is, oppose the change in mag-
netic flux coupled with the contour). When the two con-
tours approach each other, the flux coupled with the sec-
ond contour increases, which means that the direction
of the induction current in that contour is opposite to the
current in the contour. On the other hand, when the con-
tours are moved away from each other, the decrease in
the flux in contour 2 leads to an induction current in that
contour that is directed in same sense as in contour 1.
5.21. The induction emf is

__d@n _ g
&= — d: Ldt_ldt'

In the case at hand the variable quantity is the induc-
tance. When the spiral is stretched, the inductance falls,
so that dL/dt << 0 and &; > 0. The generated induc-
tion emf leads to an increase in the current in the cir-
cuit. For an exact calculation one is forced to solve the
equation

“Tdr
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which requires knowing the time dependence of the in-
ductance, L = L (2).

5.22. Since removal of the iron core results in a decrease
in the induction and the magnetic field flux in the so-
lenoid, during removal there emerges a self-induction
emf, which opposes the reduction in the flux and, hence,
increases the current flowing in the solenoid (the direc-
tion of the external emf, which supplies DC power to the
solenoid, and that of the self-induction emf are the

same).
5.23. The self-induction emf defined by the formula
.4 = —L(dI/dt) is proportional to the derivative

d//dt (for equal inductances), which is the greater the
steeper the straight line. Hence, the self-induction emf
is higher for the inductance for which the time dependence
of the current is depicted by straight line . Since the
slopes of the straight lines do not change when the
currents pass through zero, both the numerical values
and the directions of the self-induction emf’s are re-
tained.
5.24. The self-induction emf defined by the formula
dr

gs.!- =—L qc
has its maximal value, obviously, at the point where the
rate of decrease of current is greatest, that is, at point 3.
5.25. In Figure (a), after key K is closed, the current
flowing through the circuit that consists of L and R con-
nected in series is initially the same as the current that was
flowing before K was closed. For this circuit we can write
Kirchhoff’s law in the form

a7
—L d:

=RI.
Separation of variables and subsequent integration yield
I = I,exp ( —Rt/L).

The current falls off according to an exponential law,
with the self-induction emf being initially

das
gs.]. =—L Tt‘:IOR,

which means that the self-induction emf is equal to the
emf of the DC source.
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In Figure (b), after key K is opened, the current initial-
ly is the same as the one that was flowing in the circuit
before K was opened. In this case, however, ther esistor
R closes the circuit. Since prior to opening the key the
current flowing in the resistor was much weaker than that
flowing in the induction coil, the voltage across the resistor
after K is opened may initially become considerably high-
er than that prior to opening the key, which is possible
only if R is considerably higher than the resistance of the
DC source. One must bear in mind also that after open-
ing the key the current in the resistor will reverse its
direction.

5.26. The increase in current in the circuit with a re-
sistance and an inductance occurs according to the law

]=_‘;2;_[1_e(R/L)t]. (5.26.1)

Since by hypothesis only one parameter can vary, the pa-
rameter may be only the inductance because conserva-
tion of the limiting current is possible only when two pa-
rameters, § and R, are varied simultaneously. Formula
(5.26.1) implies that the increase in current is the slower
the higher the inductance in the circuit. Hence, curve 2
corresponds to a higher inductance.

5.27. The magnetic flux coupled with contour 2 is

¥ = BS,

where S is the area of the contour, and B is the magnetic
induction at the point where the contour has been
placed. Accordingly, the induction emf generated in the
contour is

dB dB dr

b=—S 7S @

The induction of the magnetic field generated by the cur-
rent flowing in a circular contour and measured at a cer-
tain distance from the contour on the contour’s axis is
given by the formula

_ RoPm

B= o rot oy

where pp, is the magnetic moment of the contour. There-
fore, the induction emf in contour 2 is

dB
=—Sv5-.

& — 31opmSv r =C r
b1= " an (RE+- o)/ (REF oo
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with C = 3puopnSv/2n. The sign of r determines the sign
of the induced emf; when contour 2 is moved closer to con-
tour 7, r is negative and so is the induced emf, so that the
direction of the current in contour 2 is opposite to that
of the current in contour 7. When contour 2 passes
through contour 7, the induced emf changes sign. The
maximal value of this emf can be obtained by nullifying
the derivative,

dg; C (R24r2)5/2 — (5/2) (R2 4 r2)3/2 2r2
dt - (B2+r2)5

Thus the emf is maximal at r = R/2. An emf of equal mag-
nitude but of opposite sign is generated at the same dis-
tance but on the other side when the conlours are brought
together.

5.28. When key K1 is closed, a closed circuit consisting
of a DC source and the induction coil LI is formed.

I -

¢~ I

| £y [r——

=0.

(a) (b) (c)
Fig. 5.28

Since there is no resistance in this circuit, the sum of
the emf’s is zero:

dr,

T =0
The fact that & and L, are constant requires that df,/dt
be constant, too. Thus, a current linearly increasing with
time will flow in Lhe circuit (the solid line in Figure (a)
accompanying the answer). The magnetic flux generated

by this current is coupled with both coils and also linear-
ly increases with time:

¥ = L1,

In the second coil there appears a constant emf (Fig-
ure (b) accompanying the answer) whose direction is op-
posite to that of the current in LI:

¥ dl
gZ:—(d—t: — L= —L,

q
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The current in the first coil increases with a constant time-
rate as long as K2 is open. When K2 is closed, a current
flows in L2, with the magnetic field generated by this cur-
rent opposing the field generated by the current in 1.
The fact that the instantaneous value of the flux coupled
with both coils must be preserved requires that there be
a jump in the current in LI, after which the current will
continue {o grow according to the same linear law (the
dashed broken line in Figure (a)). The current in L2 will
remain constant during the entire process (Figure (c) ac-
companying the answer).

5.29. (1) To find the mutual inductance we determine
the magnetic flux coupled with the contour and generated
by current I flowing in the straight conductor. In this
case the mutual inductance is determined from the equa-
tion M = Y/I. The induction at a distance x from the
straight conductor is B = poul/2nz. The fluxes that flow
through a part of the contour dz wide and & high and
through the entire contour are, respectively,

ch:-;"—“ibdx,
JU x
c+a
O =Pt g g dz Bl gy, da
- ) T 2n c

27

c

When there are N turns in the contour, the flux coupled
with the contour is
¥ N ==L INb In <
I

“+a
p .

which implies that the mutual inductance is

M=t pyp LT
27 c

(2) Since the rotation of the contour through 90° makes
the flux coupled with the contour vanish, the amount
of electricity induced in the contour as a result of such a
rotation is determined by the formula

¥ pub NI c+a
Q=g =g

(3) The rotation of the contour through 180° requires

the following work to he done:

_ Wol2 Nb c--a
A=—2¥]=——F— In .
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(since after the rotation the flux coupled with the contour
will become —W). The “minus” shows that the work is
done against the forces induced by the magnetic field.
5.30. When a current flows in a conductor, the induction
of the magnetic field generated by this current at a dis-
tance r from the conductor is

B = p I/2ar.

The magnetic flux coupled with the contour formed by
the winding of the loop is ¥ = BSN, or

Y = uol SN/2xr.

When the current drops to zero, the flux follows it, and
the amount of electricity flowing in the contour is deter-
mined by the formula Q = AW/R. Hence, the current
that had been flowing in the conductor prior to swilch-off
is \

I - 2nrRQ
T WeSN C
5.31. The following emf is induced in the coil:
, aw -
81_———&“ (0.3'1.'1)

We see that the maximal possible value of &, is the high-
er the greater the rate with which the coil is moved out
of the field. The area under the curve is given by the inte-
gral

t ur

| &ide— — [ dv—w,—w, v, BSN

0 'i’l
and, hence, is independent of the rate of coil removal from
the region with the field.
5.32. (1) The system can be considered as being a new
solenoid whose length is twice as large as that of one sole-
noid, with a density of turns the same as that in one so-
lenoid and with the same cross-sectional area. Since the
inductance of one solenoid is L = u,N,V, where N,
is the number of turns per unit length, and V is the sole-
noid volume, which in this case is twice the volume of
one solenoid, we have L, = 2L,. The same result can be
achieved by considering the self-induction emf that is
generated in the two solenoids connected in series. The
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total emf is equal to the sum of the emf’s generated in
each solenoid; hence,

. dar
f,: —ZLO—E—,

which yields L, = 2L,
(2) When the solenoids are connected in parallel, the
self-induction emf in cach solenoid is

i/ _ 1, Al

€= —Lo—g 2 Logr -

Because the solenoids are connected in parallel, the total
emf has the same value. Thus, with a current I in a cir-
cuit that is external with respect to the solenoid, the in-
duced emf is one-half the value for the inductance L,.
Hence,

1
L2:7 LO'

(3) In this case, the number of turns per unit length is
twice as large as that of one solenoid, and since the induc-
tance is proportional to N2, we have (provided that the
current remains unchanged)

Ly — 4L,

(4) 1f one solenoid is fitted onto the other and the senses
of the turns coincide and the solenoids are connected in
parallel, the current through each solenoid is /2 if the
current in the circuit is I, while the flux associated with
current /2 is @®/2. The total flux is @ and the flux coupled
with each solenoid is ¥ = ®N,. In each solenoid
there is generated a self-induction emf equal to the one
induced in a separate solenoid when current I varies.
Since the solenoids are connected in parallel, this emf
is the common emf of both solenoids. Hence,

L4 = Lo.

(5, 6) In both cases the induction flux in the solenoids
is zero, so that Ly = Ly = 0.
0.33. The induced emf is

d/
é = _L—HT’
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Hence, the value of the emf is determined by the rate
with which the current decreases (the sign of this rate is
opposite to dI/dt). The slope of the straight line on the
(-1 section is twice as large as that of the siraight line
on the 7-2 section and coincides (numerically) with the
slopes of the straight lines on sections 3-4-5 and 5-6.
Hence, in the time interval between points 7 and 2 the

‘El

Fig. 5.33

induced emf is one-half of the emf’s in the other intervals
except the interval from point 2 to point 3 where &, =
0 (I = const).

5.34. In each beam we isolate an element of length [.
On the one hand, the element can be thought of as a charge
Q = enSl, or, on the other, as an element of current
I = envS. An electrostatic repulsive force F, = EQ acts
on each charge element, where £ can be assumed to be
the electric field generated by an infinitely long straight
conductor carrying a charge whose linear densily is
T = enS. This field, which acts on the charges in the
second beam, can be written in the form

enS
E= 2megr °
so that
e2n2S52]
Fe= 2nger *
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The isolated element, if considered as an element of cur-
rent, is under a force F;, = BIl, where B is the induction
generated by the other current:

. envS
B = Mo 2nr
Thus
e2n2y2S?]
Fun= o 2nr

The ratio of these two forces is Fi,/F, = v%ggn,. Since
€olo = 1/c2, where ¢ is the speed of light in vacuo, we
obtain

Fm v2

Fe & °

5.35. The reasoning is all wrong. Even if the electrons
in the conductors are at rest in relation to the needle, the
positive ions that are moving in this case in the opposite
direction create, obviously, a magnetic field equal to the
one generated by the moving electrons when the needle
was at rest. If the electrons are moving in a vacuum, then
the electrodes and the electric field move in the opposite
direction (when the needle is at rest in relation to the
electrons).

5.36. The permeability of air is practically unity and
at any point the magnetic field vector coincides in di-
rection with the magnetic induction
vector. In the emu system of units
both vectors coincide in magnitude
as well, while in the SI system
they are related thus: H = B/p,.
Since the lines of force of induc- s J— =
tion are continuous, inside a bar

magnet they are directed from the

south pole to the north pole and H

are continued outside the magnet )

by lines directed from the north Fig. 5.36

pole to the south pole. To deter-

mine the direction of the magnetic field inside the
magnet, one must bear in mind that the circulation
integral of the magnetic ficld vector along a closed con-
tour must be equal to the algebraic sum of the currents en-
compassed by the contour. Since in the case at hand there
are no currents, the circulation integral along any con-

%t
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tour lying inside the magnet must be zero. If the contour
passes partially through the air surrounding the magnet and
partially in the magnet, the circulation integral may be
equal to zero only if inside the magnet the magnetic field
vector is directed from the north pole to the south pole.
Formally this means that inside the magnet the permea-
bility is negative.
5.37. Alternating magnetization results in liberation of
heat in the steels, with the amount of heat proportional
to the area bounded by the hysteresis loop. Since a trans-
former operates on alternating currents, the amount of
heat liberated in the core of a transformer will be the
greater the bigger the area bounded by the loop. From this
fact one can conclude that the steel whose hysteresis loop
is depicted in Figure (b) accompanying the problem is more
desirable. On the other hand, it is desirable that a per-
manent magnet have as high a residual magnetic induc-
tion and a coercive force as possible. This implies that
the steel more suitable for manufacturing a permanent
magnet is the one whose hysteresis loop is depicted in
Figure (a).
5.38. The elementary work involved in changing the
magnetic flux coupled with a contour carrying a current
I is

d4 =I1d¥Y, or dA = ISN dB.

If we use the relationship that exists between the current
in a solenoid and the magnetic field generated by this
current, H = IN/l, we obtain

d4 = H S1dB = VHdB,

where V is the volume of the core. The entire work is
B

A=V g HdB.

0

The integral on the right-hand side is the area bounded by
the B vs. H curve, the ordinate, and the segment of a
straight line parallel to the H axis (see the figure accom-
panying the answer).

5.39. As shown in the answer to Problem 5.36, the mag-
netic field inside a permanent magnet is directed from the
north pole to the south pole, while the induction is direct-
ed from the south pole to the north pole, with the result
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that these quantities have opposite signs. On the hyste-
resis loop, this condition is met on sections 2-3 and
5-6 (see the figure accompanying the problem). Formally,
to the permeability on these sections we can assign a nega-
tive value. Correspondingly, to point 0 we may assign a
permeability equal to =-o0o, while points 3 and 6 cor-
respond to zero values of the permeability.

5.40. After the current in the conductor has ceased, the
circulation integral of the magnetic field strength along
any closed contour is zero (this is true even for a closed

Fig. 5.38 Fig. 5.40

contour that passes in the toroid). Since all points of a
contour that is a circle concentric with the section of the
conductor are identical, the magnetic field strength at
all points inside the toroid is zero, too. At the same time,
the toroid carries a residual magnetic induction whose
lines of force are circles directed in the manner shown by
the arrow in the figure accompanying the answer. This
magnetic state of the toroid corresponds to point 2 or
5 on the hysteresis loop (the choice of the point depends
on which of the two directions is assumed to be positive).
If the positive direction of the magnetic field vector is
the one the toroid acquires during magnetization, this
magnetic state of the toroid is depicted by point 2.

5.41. The circulation integral of the magnetic field is
uniquely determined by the current flowing inside the
contour. Because of this, the circulation integrals along
contours 7, 4 and 5 (see the figure accompanying the prob-
lem) are the same and equal to the current I, while the
circulation integrals along contours 2 and 3 are zero. How-
ever, the situation with the circulation integrals of the
magnetic induction along these contours is quite different.
When the circulation integrals are evaluated along con-
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tours that pass through a homogeneous medium (in the
case at hand, in a vacuum), they do not depend on the
shape and size of the contours, with the result that the
circulation integrals along contours 4 and 5 are equal.
Reasoning in the same manner, we conclude that the cir-
culation integral along contour 38 is zero. But in evaluat-
ing the circulation integrals along contours I and 2
that include sections of a medium with a permeability
greater than unity, the circulation elements in this me-
dium are p times greater than in the vacuum (if p is great-
er than unity). For this reason the circulation integral
along contour 7 is greater than that along contours 4
and 5, while the circulation integral along contour 2
is nonzero.

6. Oscillatory Motion and Waves

6.1. Equal deflections from the position of equilibrium
occur if

sin @; = sin @,, 6.1.1)
where @, = ot; and ®, = ol, (as shown in the figure,

the initial phase is zero). The z vs. wt curve shows that
condition (6.1.1) is met if

sin @, = sin (n — @,).

Here cos ®, = —cos ®,, that is, phases @, and @,
correspond to velocities of the oscillating point that are

. YN

A}

D NS P

Fig. 6.1

opposite in direction. The phases of harmonic oscillations
coincide if both the deflections and the velocities of the
oscillations coincide (both in absolute value and in direc-
tion).

6.2. The amplitude of the oscillations depicted by
curve 2 in the figure accompanying the question is twice
as large as that of the oscillations depicted by curve 1.
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The periods of the two oscillations coincide. Oscillations 2
lag in phase behind oscillations 7 by a quarter of one pe-
riod. Hence, oscillations 2 are represented by the equa-
tion

z = 24 sin (ot — 7/2).

6.3. Oscillations 7 have a period that is twice as large as
that of oscillations 2, so that the frequency of oscillations
1 is one-half of that of oscillations 2. Amplitude A, is
twice as large as amplitude A,. The energies of these os-
cillations arve

W= - m}A;

2

and W, meldi—+m (5)" @a=w,
that is, coincide.
6.4. The equation of the motion projected on the z
axis is

r = A, sin wt.

In the case where the object moves clockwise, the deflec-
tion along the y axis at time zero (¢ = 0) isy = 4,, and
then it decreases to zero when the maximum on the z
axis is attained. The sine decreases from unity to zero as
the angle changes from 7/2 to m. In this case the initial
phase of oscillations along the y axis is /2, and the equa-
tion of motion projected on the y axis is

y = Ay sin (ot + 7/2).

In the case where the object moves counterclockwise,
the deflection along the y axis is zero when the phase of mo-
tion along the x axis becomes /2 and, hence, the initial
value of this deflection is y = — A, and increases to ze-
ro in the course of a quarter of the period. In the case at
hand the equation of motion projected on the y axis can
be written in the form

y = A, sin (ot — n/2).
6.5. In the first case the oscillations along the y axis

‘begin m/2 earlier in phase than along the z axis, while
in the second case they lag behind by the same quantity.
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In both cases the motion takes place along an ellipse de-
scribed by the equation

-‘.—x2~3 !/2 1

A AT
The two motions differ in direction. In the first case the

motion is clockwise while in the second it is counterclock-
wise. The equations of motion have the form

z = A,sinot, y;= Aysin (mf—{—%), Yy = A4, sin (wt—%).

6.6. When the deflection along the x axis is zero and
the velocity is positive, the deflection along the y axis
is greater than zero but smaller than 4,, with y continu-
ing to increase according to the direcltion designated by
the arrow and reaching the value A, (i.e. when wt 4+
¢ = n/2) for 0 << ot << nn/2. Hence,

0<o<<a/2

6.7. In the course of one period the oscillating point
attains each of its maximal (but opposite) values once
(i.e. in the motion along an axis). For this reason the com-
plete Lissajous figure touches the sides of the rectangle
limiting the motion exactly the same number of times as
there are periods in the motion of the point in a certain
direction. Along the z axis the figure touches the sides of
the rectangle twice, while along the y axis four times.
Hence

w, = 20; and y = A, sin 2w,t + ¢).
To determine ¢, we assign to w,f the values that corre-
spond to points where the Lissajous figure touches the
limiting rectangle. For instance, if we take w,f = @/2,
then 2w, + ¢ = n/2 } ¢. Here
sin 2wt + ¢) = —1.
Hence,
n/2 4+ ¢ = —x/2, or ¢ = —m.

6.8. Just like in the previous problem, the number of
periods it takes to traverse completely the Lissajous figure
in either direction is determined by the number of points

where the Lissajous figure touches the rectangle that
limits the motion. There are three such points in the posi-
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tive direction of x and two points in the posilive direction
of y. Thus, the entire figure is traversed in the direction
z in the course of three periods and in the direction y
in the course of two periods. Hence,

(1)1/(02 = 3/2-

6.9. The kinetic energy is maximal when the velocity
is maximal in absolute value. Being the time derivative
of displacement, the velocity is maximal at moment 2.
The maximal potential energy is determined by the ma-
ximal displacement, that is, the amplitude, and is equal
to kA2/2. Hence, it is maximal at moment 7. At this mo-
ment the kinetic energy is zero, while the potential ener-
gy is zero at moment 2. The acceleration of the particle
is at its maximum when the second time derivative of the
displacement is maximal. This corresponds to moment
1. Since at this moment the second derivative is nega-
tive, so is the acceleration.

6.10. The period of harmonic oscillations that take place
due to a quasielastic force (F = —kz) is determined
from the formula

T =220 Y mik. (6.10.1)

The spring constant & is defined as the force that is required
to stretch the spring in such a manner that the spring
elongation becomes equal to its initial length. In the
case at hand the elongations occur because of the weight
of the loads, with the result that

ky = myg/l and k, = m,g/l.

Susbtituting & into (6.10.1), we see that the masses can-
cel out and in both cases the period is

v—2n) 1l/g.

The same result can be obtained (to within a constant coefficient)
from dimensional reasoning. There arc three quantities that appear
in the problem: mass, elongation, and time (the sought period).
In addition, since [orces equal to the weights of the loads are applied
to the springs, we may assume that the acceleration of gravity g
will enter into the solution. Bearing in mind that the dimensions of
the left- and right-hand sides of any equation must be the same,
we can write

T = MeLb [LT-2%],
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where a, b, and ¢ are the exponents of the cotresponding quantities.
We have the following equations for the exponents:

a=0, b+e=0, ¢=—1/2.
Hence,
T = %l‘/zg’/?,

where ¢4 is a dimensionless coefficient, which cannot be found
using solely dimensional considerations. Above it was shown that
this coefficient is equal to 2sm.

The energy of the oscillations of a load can be written
in the form

W = mA20?%2.

Since the periods of oscillations (and hence the frequen-
cies) are equal and so are the amplitudes (by hypothesis),
the load with the higher energy is the one whose mass is

m,.
6.11. In the case at hand the quasielastic force is Archi-
medes’ force. When the bottom of the test tube lies above
or below the position of equilibrium by a distance =z,
this force is

F = —Szpg. (6.11.1)

The mass of the test tube together with the mass of the
load is equal to the mass of the displaced water, or

m = 1Sp. (6.11.2)
Using (6.11.1), we can find the “spring constant”
k= |F|z= Spg. (6.11.3)

Substituting (6.11.2) and (6.11.3) into the expression for
the period of oscillations (6.10.1), we get

v=2n Y mik=2n Y 1g.

We see that T depends neither on the mass and cross-sec-
tional area of the tube nor on the density of the liquid.
The same result can be obtained from dimensional con-
siderations, just like it was done in Problem 6.10.

6.12. If m, is the known mass and m is the unknown
mass and if o, and » are the angular frequencies of oscil-

258 \



fations of the systems with the known mass and the knowi
mass plus the unknown, then

wo =V k/my, (6.12.1)
o=V kl(m,+ m), (6.12.2)

where k is the spring constant. Combining (6.12.1) with
(6.12.2), we arrive at a formula for the unknown mass:

m= mo(m°—1)

6.13. The total energy of oscillations of a material par-
ticle can be made equal to the maximal kinetic energy or
maximal potential energy of the particle. In the case at
hand it proves expedient to compare the maximal poten-
tial energies, which are specified by the maximal deflec-
tions. When the deflection is at its maximum, the load
(or particle) is at a height » above the position of equilib-
rium:

h=1(1—cosa).

Since the expression inside the parentheses is the same for
both pendulums, the pendulum with the greater length
is raised to the greater height and, hence, has the higher
energy.

6.14. Just like in the previous problem, the total energy
can be made equal to the maximal potential energy. Since
the center of gravity of the physical pendulum is high-
er than that of the simple pendulum, the physical pen-
dulum can be thought of as a simple pendulum of smaller
length. Thus, the given simple pendulum has a higher
energy.

6.15. In the case at hand the disk constitutes a physical
pendulum. The period of oscillations of a physical pendu-
lum is given by the formula

1= ()"

The moment of inertia of the disk about the center is
J = mR?2. According to Steiner's theorem,

J = m (R*2 4+ R}),
whence

79 [(R2/2+R2) ]1/2.
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As expectled, the period does not depend on the mass of
the penduluin.

6.16. The angular frequency of oscillations for a physical
pendulum is

» = (mgR/J)/?,

where m is the mass of the pendulum, and J is the pen-
dulum’s moment of inertia. If the distance from the cen-
ler of gravily to the point of suspension is R, then, ac-
cording to Steiner’s thcorem, the moment of inertia of
the rod about the suspension point is equal to the moment
of inertia of the rod about the center of gravity plus the
momenl of iunertia of a material particle whose mass is
that of the rod about the point of suspension:

J= ’f_f 4 mR2.
Thus,

(-)—( 12gR, )1/2
L2 12R8

To find the extremum, we nullify the derivative of
with respect to R.:
do Gg (12~ 12Rg)

IR ~ REET12R2PE 0.

Whence

l
R, = — — 0.291.
23 0.29

6.17. The acceleration varies according to the same law
as Lthe force. Thus,

Iy

m@o

15
F, .
= ,—n’ S sin ot d¢ = (1 — cos wf) == vy, (1 — cos wi).
0

The v vs. t curve is depicted in Figure (a) accompanying
the answer. If the initial position of Lhe point is taken as
the origin, then
t
= vy S (1 —cos i) dt= vyt —':—3“ sin wt.
0



Thus, we have found that the particle is in trauslational
motion with a velocily that periodically increases from
zero to its maximum, equal lo 2vp, and then drops off Lo

0
' (a)
Fig. 6.17

zero. The motion is depicted schemaltically in Figure (b)
accompanying the answer.

6.18. The solution to this problem is similar to that of
Problem 6.17, the difference being that the initial phase

X

°| N t 0
(a) (b)
Fig. 6.18

of the driving force is different. In the case al hand, ini-
tially the force is maximal. The time dependence of the
velocily is
1
Iy . Fy . o
v=—\ coswl=——sinwl=v, sin of.
m mw
0
In contrast to the previous case, the velocily changes ils
direction during motion (Figure (a) accompanying the
answer). The displacement of the particle can be found
after inlegration:
f
. Um » R
wr S ) o —— — COS ®7).
x = vy 5 sin ot = -1 (1 )
0
Thus, in the case at hand the motion is purely harmouic,
as shown by the curve in Figure (b).
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A comparison of the results of the previous problem
with those of the present problem demonstrates that the
motion of a material particle under a force that varies ac-
cording to the harmonic law depends on the initial phase
of the force. The motion may vary from purely translation-
al to purely oscillatory. These features of a periodic force
manifest themselves in various phenomena, say, in
high-frequency electric discharge in gases, where the mo-
ments of collision of electrons, ions, and atoms accompa-
nied by changes in velocities occur at different phases of
the applied variable electric field.

6.19. If the amplitude decreases with the passage of
time according to the law

A = AOO"B’,
then, since the oscillation energy is proportional to the

square of the amplitude, the decrease in energy occurs ac-
cording to the law

W = Wyt or InW =In W, — 28t.

The slope of the straight line that expresses the decrease
in energy on the semilogarithmw scale must bhe double

(A, x
nW|
2 |
|
W |
| f
0 l.
0 1 37r/2 fm/z 71r/2 9n/2
//
//
~
~
/
Fig. 6.19 Fig. 6.20

the slope of the straight line that expresses the decrease
in amplitude.

6.20. The figure accompanying the problem shows that
the initial phase is n/4 while the ratio of the amplitude
whose phases differ by 2n is equal to 1.5. This means that
the logarithmic decrement In (4,4,/4,) is approximate-
ly equal to 0.4.
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6.21. Initially the velocity of the pendulum is zero and
tends Lo zero as the pendulum approaches its position of
equilibrium, so that it first grows and then, after passing
through its maximum, decreases. We can arrive at the
same conclusion after analyzing qualitatively the differ-
ential equation of the motion of the pendulum written

lot] wl

0 .
(@ to (b) !

Fig. 6.21

in polar coordinates in the common approximation of
small deflections:

Ia = —qo. — ra.

We select a system of coordinates in which the positive
direction is the one in which the pendulum was initially
deflected from the point of equilibrium. Initially, when
the velocity was zero and the deflection was the largest,
the acceleration was the highest. The curve depicting the
time dependence of the deflection has at this point the
greatest curvature. In the process of motion, the first
term on the right-hand side of the equation decreases in
numerical value, while the second term (which is positive

since a << 0) grows, and because of this the absolute val-
ue of the acceleration decreases. There finally comes a mo-
ment when the acceleration vanishes and the velocity
reaches its maximum. After that the acceleration grows,
that is, becomes positive and increases in numerical val-
ue, which in the system of coordinates employed here
implies deceleration, and the pendulum asymptotically
approaches the position of equilibrium. The time depen-
dences of the absolute values of the deflection and the ve-
locity of the pendulum are shown in Figures (a) and (b)
accompanying the answer.

6.22. In damped oscillations the damping factor is
smaller than the natural frequency of free oscillations of
the system: B << w,. In aperiodic motion the situation is
reversed: f > w,. The damping factor is defined as the
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ratio p = r/2m, where r is the resistance of the medium,
and m is the mass of the load. Both quantities remain un-
changed, and so does . To go over to the aperiodic mode,
we must make o, smaller. Since @, = V k/m, we must
diminish % since m is fixed. At a given elongation force,
the elongation of the spring is proportional to the initial
length of the spring. Hence, the spring constant isinverse-
ly proportional to the length of the spring, with the re-
sult that we must increase the length of the spring if we
wish to diminish k.

6.23. (1) The condition for an aperiodic discharge is
p > w,. The damping factor

B ="R/2L (6.23.1)

does not depend on the capacitance. To make the process
aperiodic,,we must diminish the natural frequency,
which ‘or a fixed inductance means increasing the capa-
citance, and the easiest way to do this is to bring the
plates of the capacitor closer together.

(2) According to (6.23.1), to decrease the damping fac-
tor for a fixed resistance, we must increase the inductance.
To preserve the value of the natural frequency w, =

1/} LC, the capacitance must be decreased by the same
factor. The frequency of the damped oscillations,!

m:V(-OO__ﬂ_zv

increases in the process, approaching o,.

(3) When the resistance and inductance are decreased
simultaneously, the damping factor remains unchanged,
but for a fixed capacitance the oscillation period 7 =
21/} o — B? decreases and, hence, so does the loga-
rithmic decrement.

6.24. Both the logarithmic decrement and the period
depend on the damping factor:

0 =pT (6.24.1)
T =2n/) o —p2. (6.24.2)
Since the lengths of the pendulums are equal, the natural

frequencies of free oscillations (that is, without resis-
tance) are equal, too. The damping factor is

B = r/2m, (6.24.3)



where r is the resistance of the medium, which is the
same for the two pendulums. Substituting (6.24.3) into
(6.24.1) and (6.24.2), we see that both the period and the
logarithmic decrement of the sphere with the smaller
mass are greater.

6.25. There is no periodic driving force in the system;
hence, the oscillations are not forced. The oscillation fre-
quency is determined by the mass and by the elastic prop-
erties of the spring, and since the amplitude of the oscil-
lations remains unchanged, the oscillations are undamped
although, of course, loss of energy is inevitable. This loss
is compensated by the energy stored in the DC source.
Thus, the oscillations belong to the type that occur with
a natural frequency but with replenishing the energy from
an external nonperiodic source, that is, self-oscillations.
6.26. The frequency dependence of the displacement am-
plitude in forced oscillations is given by the formula

A=—rFo
m V (@— o+ it

while the frequency dependence of the velocity amplitude
is given by the formula

B Fyo
" m V(0 — 0?2 -4pte? |

In the first case, at =0 the amplitude A does not van-
ish but becomes equal to Fy/mo}, or F/k, so that the curve
cuts off a segment on the vertical axis, which segment
is the displacement under a constant force. The velocity,
of course, is zero in this case. Thus, the curves in Figure
(a) correspond to the frequency dependence of the displace-
ment amplitudes, while the curves in Figure (b) cor-
respond to the frequency dependence of the velocity ampli--
tudes. The smaller the damping factor f, the higher
the curve in the respective diagrams. The damping factor
also determines the position of the maxima of the dis-
placement amplitudes:

Orpes = V‘Dz" 202

The maximal velocity amplitude for all damping factors
is achieved at w = w,.

6.27. The displacement A, at ® = 0 is determined by
the ratio of the maximal force F to the elastic constant
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k (the spring constant), or A = F/k. By hypothesis,
both F, and k remain unchanged, whereby A does not de-
pend on the resistance of the medium. The resonance fre-
quency, defined as

Wpes = V/ 02— 22,

is the closer to the natural frequency the smaller the val-
ues of the damping factor . Since the latter is defined as
f = r/2m and the mass of the oscillating object remains
unchanged {(by hypothesis), B decreases and w.s grows
as r drops. The amplitude at the resonance frequency,

A e Fo
T
is the higher the smaller the resistance of the medium.

6.28. The differential equation describing the behavior
of the system is

]

mz Lz 4 ke = F, sin ot, (6.28.1)

and it has two solutions, a steady-state and a transient.
The latter describes the process of setting in of forced os-
cillations. Usually only the stcady-state solution is con-
sidered. However, at r = 0 and o = w, this equation
has no steady-state solution, and because of this the am-
plitude continuously increases and so does the energy of
the system, which energy is taken from the source of
oscillations. In reality, a system in which the resistance
of the medium is negligible for all practical purposes
either behaves in such a manner that the amplitude reaches
values at which Hooke’s law ceases to be valid (and, re-
spectively, Eq. (6.28.1) loses meaning) or is destructed.
One must bear in mind also that the fact that we ignore
the resistance of the medium, which at low velocities is
a valid assumption, cannot be justified as the velocity
grows higher and higher.

6.29. The resonance frequency is the same for both os-
cillations:

Ores =V 0F — 22,
Since the natural frequencies also coincide, so do the
damping factors . The resonance amplitude is

- Fy
A= o Vi



Only two quantities in this formula can vary: the mass of
the oscillating object and the amplitude of the driving
force. However, from the fact that the natural frequen-
cies are the same and the damping factors are the same, it
follows that for different masses only the elasticity coel-
ficients and the resistances differ:

wo=VkIm, p=r/2m.

But by hypothesis, the systems are supposed to differ
only in one paramecter. This parameter, therefore, can
only be the amplitude of the driving force, which for one
system is twice as high as for the other.

6.30. According to Huygens' principle, each point of a
wavefront is an independent source of oscillations. Au ap-

erture whose width is much smaller than the wavelength
limits a section of the wavefront (a line in the present
case) that can be considered as a point source. This
source emits approximately semispherical waves that
propagate in space; in the case at hand these are approxi-
mately semicircles with differences in radii between the
neighboring waves equal to one wavelength.

6.31. Since the frequency of the oscillations remains
constant, the energy carried by the wave is determined
uniquelly by the amplitude, that is, is proportional to
the square of the amplitude. The amplitude at a crest
A, is equal to the sum of the amplitudes of the incident
and reflected waves, A, and A,, while the amplitude at a
node, 4,, is equal to the difference between 4, and A,:

A1=A1+A2, AB=A1_A2'



Hence, the amplitudes of the incident and reflected waves
are
A+ A A-—4
Ai;‘ 2 n , A2= 2 n .
Hence,
Ay A=A, AAg—1 65—t
Al - AI+A11 - Al/An+1 - o+1°
The ratio of the energy of the reflected wave to thal of
the incident wave is equal to the ratio of the squares of

the amplitudes:

Hence, the ratio of the energy that has passed the obsta-
cle to Lhe energy of the waves incident on the obstacle
is

w1 = (57) = o

W, 5 CES

When the amplitudes are equal (8 = 1) no standing waves
are formed and the entire energy passes the obstacle.
In the theory and practice of propagation of waves (say,
clectromagnetic waves) a common notion is that of the
standing-wave ratio, which is the ratio of the cnergics (or
squares of amplitudes) at crest and node. Obviously, in
an ideal standing wave this ratio is infinite.
6.32. The figure accompanying the problem shows that
the amplitude decreases ten-fold over a distance equal
to four wavelengths. Denoting the amplitude near the
source by A, and the amplitude at a distance of four
wavelengths from the source by A4,, we can write

AyA, == 10, or log (A,/4,) = 1.
In natural logarithms,
In (Ay/A) == 2.3.

For the amplitude at a distance of one wavelength from
the source we have

In (4,/4,) = 2.3/4 — 0.575,

while for the amplitude at a distance of z from the
source we have

In (4,/4,) = 0.575z/A.
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Whence
A, = Ay exp (—0.575z/A).

This dependence is often expressed in terms of the wave
number %, which is related to the wavelength as follows:
k = 2n/A. Thus,

A, = A, exp (—0.0916 kz).

6.33. The statement is false. The densily of the gas,
which is in the denominator of formula (6.33.1), is de-
termined by the ideal-gas law thus:

p = pM/RT, (6.33.1)

where M is the molecular mass (weight) of the gas, and
R is the universal gas constant. If we substitute this val-
ue of the densily into (6.33.1), the pressure cancels out
and we get the formula

c=V YRTIM, (6.33.2)

according to which for given gas the speed of sound de-
pends only on the temperature of the gas. Actually, the
temperature dependence is somewhat more complicated
than simple proportionality to 7"/2, since in diatomic and
especially multiatomic gases the specific heat capacity
at constant volume grows noticeably with temperature.
6.34. According to formula (6.33.2), the speed of sound
in a gas is proportional to the square root of y and
inversely proportional to the molecular mass. At a fixed
temperature the difference in speeds of sound is deter-
mined by the ratio y/M. For water vapor (six degrees of
freedom) y = 1.33 and for neon (three degrees of freedom)
y = 1.67. The molecular mass of water is 1.8 X
10-2 kg/mol and that of neon is 2.02 X 10-2 kg/mol.
The ratios y/M is 74.1 for water vapor and 82.5 for neon.

Thus, the upper straight line depicts the temperature
dependence of the speed of sound in neon and the lower
one depicts the temperature dependence of the speed of
sound in water vapor. Both straight lines have the same
slope equal to 0.5. A calculation via formula (6.33.2)
yields 454 m/s for neon at 300 K and 430 m/s for water va-
por at the same temperature.
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6.35. When the source is moving and the receiver is
fixed, the registered frequency is

1
Vi="o 1—v/c ’

while when the source is fixed and the receiver is moving,
'Vz = Vo (/1 + U/C).

The first formula implies that v; grows without limit as
v/c tends to unity (curve I in the figure accompanying
the problem), while v, increases linearly as v/c tends to
unity (curve 2 in the same figure).
6.36. When the train is moving with a speed v and the
speed of sound is ¢ and the frequency measured by an ob-
server on the train is v, (better to say, when the train is
at rest), the frequency registered when the train ap-
proaches the observer standing at the roadbed is

vy = 0 (6.36.1)

T i—v/e’

while the frequency registered when the train is moving
away from the observer is

P Iy (6.36.2)

For the sake of brevity we introduce the notation v,/v, =
6 and v/c = B. Then

1+
6——-— W ’
whence f = (8 — 1)/(§ + 1), or
Vi—WV
Vs vi—{—v: c. (6.36.3)
Substituting (6.36.3) into (6.36.1) or (6.36.2), we get
Vo=, (1 —vlc)=v, (14 vic)= \’21\’41_\'\2,2 .

6.37. When the observer stands far from the line along
which the source of sound is moving, the equation that
describes the Doppler effect contains not the velocity of
the sound proper but its projection on the direction of
propagation of the wave. For the observer that stands
very near to the moving train this velocity is practically
that of the train and varies suddenly, and so does the
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pitch of the sound heard by that observer (curve 7 in the
figure accompanying the problem). For the observer that
stands at a rather big distance from the moving train,
the projection of the velocity varies more smothly, drop-
ping to zero when the train is closest to that observer and
then increasing. For this reason the time it takes the reg-
istered frequency to change is greater (curve 2).

6.38. If for an immobile source the wavelength is A,,
the wavelength A when the source moves with a velocity
v is shorter than A, by vT,. The waves will arrive at the
obstacle having the frequency

pm ety 1
7N T Ap—vT T 0 1—yje

The waves will reflect from the obstacle but will retain
their frequency and wavelength. Since the receiver is
moving toward the waves with a velocity v with respect
to the medium, the relative velocity of the receiver and
waves is ¢ + v and the registered frequency is

c+v c+v ) c+v o 14v/c

Vo == = == D, — .
2 A ¢/vo—v/vy 0 c—v 0 1—v/ec

6.39. At frequency v, the wavelength in still water is
Ay = c/vy. In a river whose waters flow with a velocity v,
the wavelength downstream is by v7l longer than A,
and the wavelength upstream is by vT shorter, that is,

= Ay £ VT.

In relation to the receiver that is down the stream, the
velocity of the received waves is the sum of the velocity
of waves in still water and the velocity of the river waters
(as if the receiver was moving against the waves). For
the receiver that is up the stream the velocities are sub-
tracted from each other, with the result that

¢ = ¢y V.

The frequency v registered by a receiver is the ratio of
the speed of sound to the wavelength, or

v—= v ¢ EvV
- xo:!:UT—Co/Vo:tv/Vo

= Vg.

We see that v is equal to the frequency of the oscillations
generated by the source.
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6.40. The wavelength of waves generated by a source
moving in a stationary medium is

}v=7\,oivT,

where the minus sign corresponds to the propagation of
waves from the source forward, while the plus sign corre-
sponds to waves propagating backward. When the receiv-
er is in motion, its velocity with respect to the waves is

c=cy v

Here the plus corresponds to motion against the waves,
while the minus corresponds to motion in the same direc-
tion as the waves propagate. Since the velocities of the
boats in relation to waves are different and the distance
between the boats remains unchanged, the time it takes
a signal to travel from one boat to the other depends on
which boat is the receiver and which boat is the source:

l

v °

If the boats could move with a speed equal to the speed
of waves, then the boat moving ahead of the other one
would cease to receive any signal, since the signal could
not catch up with it. The frequency of the signal received
by each boat is defined as the ratio of the velocity with
respect Lo the waves to the receiver wavelength. For the
boat floating at the rear,

ctv _ A+v/e

VT Rerol T Udlgvt 0
and for the boat floating in front,
v _CoV 1—v/cy ~ v,

A—vT — (1—vfc)vgt

In both cases the frequency of the received signal is equal
to that of the sent signal.

6.41. The times of arrival of longitudinal and trans-
verse waves are, respectively,

t” = S/U” and t.L = S/UJ_,

where v and v, are the velocities of propagation of the
longitudinal and transverse waves, and S is the distance
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between 4 and B. The time interval between the arrival
of longitudinal and transverse waves is

A[‘—_tl-—l"-S(l ~_I_")a

v
L Y

whence

Vv,

S’ m=t Af.

vy
If the seismographs are placed at two points, then by
measuring the distances S; and S, (see the figure accom-
panying the answer) we can
establish at which point the
source of explosion is located.
In fact, in this way the epicen-
ters of earthquakes are located.
6.42. The speed of sound waves

in air is ¢, = 330 m/s and Sy S
in water it is ¢, &~ 1500 m/s. 2
According to Snell’s law,

sin a,/sin oy = ¢,/cy. A A
Accordingly, when the “sound Fig. 6.41

beam” enters the water, it will

be deflected from the perpendicular line still strong-
er and angle a, becomes greater than angle «,. The
velocity ratio determines the maximal angle at which
sound waves can go “into” water. The maximal angle of
incidence oy, satisfies the condition (o, = 90°)

sin oy, = ¢//c,.

At ¢; = 330 m/s and ¢, = 1500 m/s we have sin o, =
0.22 and a, ~13°. At an angle greater than 13°
total reflection occurs. Such a situation is depicted in the
figure accompanying the problem.

The perturbation caused by the incident wave pene-
trates the surface of the water but dies out exponentially,
and this happens the faster the greater the angle of inci-
dence of the wave. The wave dies out practically at a
depth of the order of one wavelength. Sometimes one can
hear a fisherman whisper: “Keep quiet! The fish is here!”
The above estimate shows that a person standing at a

distance away from the riverbank can never “scare” the
fish.
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6.43. Imagine a plane that is parallel to the surface of
the earth. The sound that an explosion generates and that
propagates at a certain angle « to the normal to this plane
will be deflected still greater. As Snell's law shows,
this happens when the speed of sound increases with alti-
tude. Thus, the curve that represents the path along
which the sound wave propagates suggests that the speed
of sound increases continuously with altitude. Since the
speed of propagation of waves in a gas is proportional to
the square root of the temperature, then, hence, the behav-
ior of the curve of sound propagation (see the figure ac-
companying the problem) can be explained by the fact
that the air temperature increases with altitude.

6.44. Both longitudinal and transverse waves can trav-
el in the earth. The first are partially reflected by water
and partially transmitted through water, while the second
are completely reflected by water. The reflection of the
longitudinal and transverse waves can be used to estimate
the upper boundary of the water pocket. The longitudi-
nal waves will be partially reflected by the botton of the
pocket. Thus, to measure the depth of the pocket one can
use only longitudinal waves.

6.45. For the observer to hear the sound of the airplane
from a distance @ carlier than the sound arrives from
point A that is directly above the observer, the time it
takes the sound to travel from airplane to observer must
be shorter than the time it takes the airplane to fly the
distance a plus the time it takes the sound to travel from
point A to the observer. The first time is

t,=1V a®+h¥e,
while the second is
t, = alv + hle,

where ¢ is the speed of sound. The above-stated condition
can be written thus:
h

M<i+_.

c v ¢’

If we square both sides of this inequality and carry out
the necessary manipulations, we get

a(z_:_1)<2v

c
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The ratio v/c = M is known as the Mach number. Then
(6.45.1) can be written thus:
h.

o M
¢ <24m—g

If, say, the airplane is flying with a speed double the speed
of sound, the maximal distance from which the sound
will arrive sooner than when the airplane appears over-
head is equal to (4/3)h.

7. Alternating Current

7.4. The segment of the cross section of the loop of
width dr and height & is penetrated by a magnetic flux
whose instantaneous value is

d® = Bkh dr,

where 3 = pyl/2nr. Whence

i
ro 271 Rl : Cw

R2
O— pgil S—QL_ wohl In Ry \
Ry

The flux coupled with the loop is

WhIN . R,
qr_,—__'_“T In "i ) Fig. 7.2

The current in the conductor is I = I, cos wt. The emf
induced in the loop is

d¥  phlgNo ] R,

gi = — di o= pre n ﬁl—-Sln ot.
Finally, the effective value of this emf is
NI oo Ry
Giot = ——5— = In R,

7.2, The figure accompanying the problem shows that
the capacitive reactance is four times the inductive reac-
tance. If the frequency is doubled, the first quantity
will decrease by a half and the second will double, which
means they will become equal. As shown by the figure
accompanying the answer, the ratio &,/I, will decrease,
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and since &, musl remain unchanged, the current grows.
The same rvesult can be obtained analytically. The ampli-
tude of the current in the circuit is

I,= &0
0= T 5
Vo met (g to)
Prior to the change in frequency, 1/Cw > Lo, and hence

(—éfm—— Lm)2 > 0.

After the frequency is doubled, 1/Co = Lo. Here I, =

€J/R.
7.3. The current in the circuit containing a resistance
and an inductance connected in series is

I = I,sin (0t 4+ ¢),
where the amplitude value of the current is

%o , ()

To= Rcosg—Losing ’ ov o= V R2F Lio?

?

and the tangent of the phase of the current with respect
to the voltage is

tan ¢ = —Law/R.

From these expressions it follows that as the frequency
grows the lag of the current phase in relation to the voltage
phase increases, which results in a decrease in the cur-
rent. T'he average power in the circuit is defined thus:

P— % &,1, cos .

As the frequency grows, the amplitude of the current de-
creases and so does the power factor, which is the cosine
of the phase shift between voltage and current. The power
will also decrease as a result.

7.4. The current in the circuit containing a resistance
and a capacitance connected in series is

I = I,sin (0t 4 o),
where the amplitude value of the current is

— & ) €
Iy = Rcosp+(1/Co)sing ° or I, -

’

VRt
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and the tangent of the phase shift of the current with re-
spect to the voltage is

tan ¢ = 1/RCo.

From these expressions it follows that as the frequency
grows the phase shift by which the current leads the volt-
age decreases and tends to zero, while the current grows.
The average power in the circuit, defined as

P-- .;_ &l ,cos @,

increases with frequency, since cos ¢ tends to unity, and
so does the amplitude value of the current.

7.5. The figure accompanying the problem shows that
the current leads the voltage in the phase by 0 << ¢ <<
n/2. This happens if a capacitance is connected in se-
ries with the resistance.

Fig. 7.6

7.6. For the case shown in Figure (a) accompanying the
problem, we can write (if we ignore the resistances of
the ammeters)

Uy .. i
I, = =2 sin ot [y sin ot,

R
I,-= %3— sin (mt_%) == —1I g, COS O,

where U, is the amplitude value of the voltage belween
points / and 2. The current I, flowing through ammeter
A3 is the sum of currents I, and [,:

I; = Iy sin (ot + ¢)

(the vector diagram of currents is depicted in Figure (a)
accompanying the answer). The amplitude value of cur-
rent I, is

Tog =V Iy oo,
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and the phase shift of the current in relation to the voll-
age is

tan @ = — I,,/1,,.
Since the ammeters measure the eflective value of the cur-
rent, Iog = I,/}/ 2, we have

Iet =V Tien + Then -

In the case shown in Figure (b) accompanying the prob-
lem, just like in the previous one, the currents that flow
through the resistance and the capacitance differ in phase
by n/2, the only difference being that here the current
flowing through the capacitance leads the applied voltage,
while the current flowing through the inductance lags
behind the voltage. The corresponding vector diagram is
depicted in Figure (b) accompanying the answer. The cur-
rents measured by ammeters A7 and A2 are

I, = (Uy/R) sin wt = I, sin ot,
I, = UyCo sin (ot + 1/2) = I,, cos ot.
The amplitude of the current measured by ammeter A3
is
103"—: VI§1+I:zv
while the tangeut of the phase shift is
tan @ = I4,/1 -
The current measured by ammeter A3 is
Isett ==V Tent + Dot <Ttett+ L 2ere

7.7. For the case depicted in Figure (a) accompanying
the problem, the voltage between points 7 and 2 is

U, = [,R sin ot = Uy, sin ot,

while that between points 2 and 8 is

Ao o ny_ _ Lo
U, - Co SN (o)t — 7) = — G5 Cos ol = — Uy, cos ot

(see the vector diagram in Figure (a) accompanying the
answer). The voltage between points 7 and 3 is the sum of
U, and U,:

Uy = U, + U, = Ugyysin (0t 4 ¢).
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Its amplitude value is

U03 == V (]gl =+ ng’

while the phase shift with respect to the applied voltage
is given by the following formula:

tan ¢ = —Uy/U,,.

Since _the voltmeters measure the effective value Ueg =
UyV 2, we have

Useirt = V Uletr + Userr <<Utest + Usen-

For the circuit depicted in Figure (b) accompanying
the problem, just like in the previous case, the voltages

Fig. 7.7

across the resistance and the inductance differ in phase by
n/2, the only difference being that here the current
flowing through the inductance lags behind the voltage,
while in the previous case the current flowing through the
capacitance leads the voltage (and, hence, the phase shift
between the voltages across the resistance and across the
capacitance is —mn/2). The respective voltages are
U, = IR sin ot = Uy, sin ot,
U, = I,Lo sin (ot + 71/2) = U,, cos ot
and
U, = Uy sin (ot + ¢)
(see the veclor diagram depicted in Figure (b) accom-
panying the answer). The amplitude value of the voltage
is
U03 - V []ﬁl + U(Z)-z'
The effective voltages measured by the voltmelers are re-
lated thus:

User = V Ulerr - User <Uter -+ Userr-
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The tangent of the phase of the voltages is
tan ¢ = U02/U01-

7.8. 1In the first case we have resonance, at which the
voltages across the capacitor and the inductance,

Uc _ o gin (ot — 1/2) and

Cw
Uy~ Iolwsin (ot +a/2), (7.8.1)

arc equal in magnitude and opposite in phase. From
Eq. (7.8.1) and the fact that a capacitor and an inductance

0 0 N—r t
(a) (b)
Fig. 7.9

connected in series do noi change the current it follows
that

1/Co» = Lo.

For the case where a capacitance and an inductance are
connected in parvallel, in cach of these elements there flows
a current

Io:-UyCosin(wt—n/2) and [, Yo gin (ot 4 n/2).

ol "
The total current is
[ = U, (Co — 1/Lw) cos ot,
and, since Co = 1/Lw, we have
=Tec 4+ I; = 0.
7.9. If the voltage varies according to the law
U= U,sin ot

and there is a definitec phase shift between voltage and
current, so that

I =1,sin (0t + @)
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(where the phase difference @ may be either positive or
negative), then the instantaneous value of the power is

P = Uyl sin (ot 4 @) sin ot.

If we write
sin (ot + @) sin wt -~ sin ot > cos@ + sinwt < cos ot X cos ¢

——i— [(1— cos 2wl) cos ¢ -} sin 20t ~ sin @],
we get

D= —;—[cos ¢ —cos (2ot + @)1U,J,. (7.9.1)

The maximal value of the power is

P = —;— Uy, (cosp+1),
while the minimal value is

P = 5 Uyl (cos g —1).

Whence, the power factor is
_Pmax+Pm1n

COS (P =
max~ ’Pm!n

(bear in mind that Py, is negative).

Formula (7.9.1) shows that the frequency of power va-
riation is twice the frequency of the applied voltage. Dur-
ing one period of vollage variation the power passes twice
through the maximum and the minimum.

Here are some particular cases.

(1) @ = 0. The load is a purely active resistance. In
this case (Figure (a) accompanying the answer) Py, = 0
and Pmax = Uolo-

(2) @ == +n/2. The circuit contains only a reaclive
element, that is, a capacitance or an inductance. Since
in this case cos ¢ — 0, we have (see Figure (b) accompa-
nying the answer)

Pmax = —Pmin-
The work performed by the AC source over one period of
variation of the power is zero. This mecans that during

one half of the period the energy flows from the AC source
to the reactive element in the form of the electrostatic
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energy of Lhe capacitance or the magnetic energy of the
inductance, while during the other half the energy is re-
turned to the AC source.
7.10. When a watch is inside the solenoid, the magnetic
field generated by the solenoid forces the steel parts of
the watch to change periodi-
cally their magnetization, fol-
lowing the hysteresis loop. When
the watch is slowly removed
. from the solenoid, the magnetic
field acting on the watch
gradually decreases, and as Lhe
periods pass, the hysteresis loop
shrinks. Each second H0 hyster-
Fig. 7.10 esis loops are traversed, each
being smaller than the previous
one (the number “50” appears because the frequency of the
AC source is usually 50 I1z). This process is roughly sketch-
ed in the figure. When the watch is completely removed
from the magnetic field, it proves to he completely demag-
netized.
711, At the moment when Lhe “plus” of the voltage is
atl terminal a (sece the figure accompanying the problem),

k\m%

(a)

Fig. 7.11

the current passes through diode 2, resistor R, diode J,
and returns to the AC source through terminal b, which
has the “minus” of the voltage at that moment. After the
applied voltage changes sign, the current from terminal b
passes through diode 4, resistor R, diode 7, and returns to
the AC source via the negative terminal ¢. Thus, the cur-
rent that passes through R consists of aseries of alternat-
ing halves of sinusoids (Figure (a)). The average valuc
of the current over one or any integral number of half-pe-
riods is
/2

2y (o ALy 2y
[nv = —TE ) Sin wé dt S T - n ~ ().637]0»

0

[~
oo
ne



In carrying out this calculation in accordance with the
conditions of the problem, it was assumed that the volt-
age drop across the diodes is negligible and that the recti-
fication process does not alter the sinusoidal nature of
the emf. As for the emf that is generated in the secondary
winding of a transformer whose primary winding is the
load resistance R, it must have two opposite symmetric
sections, since each half-period of the pulsating current
has an ascending section and a descending section. An
idealized curve of the voltage in the secondary winding
of a transformer is shown in Figure (b). Actually, the
curve is much smoother because of the inductance of the
transformer, which plays the role of a choke coil, the in-
terturn capacitance, and other factors. The approximate
shape of the voltage curve on the transient sections is
depicted by a dashed curve.

7.12. After the rectifier the current branches out (sec
the arrows in the figure accompanying the problem). A

U
y T ¥ ~

0 t

Fig. 7.12

fraction of the current flows through resistor R and a frac-
tion is used to charge the capacitor. If the internal re-
sistance of the source (together with the diodes) is low,
then the voltage across the capacitor is equal to the volt-
age at the “out” terminals. This occurs as long as the
voltage is lower than the maximum of the pulsating volt-
age. After the voltage passes the maximum, it falls off
and becomes lower than the voltage across the capacitor.
Because of this the capacitor will begin to discharge
through the resistor, with the voltage across the capa-
citor decaying according to the law

U = U, cexp (—t/RC)

(the discharge current is designaled by arrows in the ligure
accompanying the answer). The greater the capacitance,
the slower the decay, which continues until the voltage
across the capacitor becomes equal Lo the growing voltage
in the following half-wave. Then the capacitor is charged
to the maximum of the voltage avew. The process
continues in this manner. Thus, a capacitor in the circuit
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makes the “oul” voltage smoother, and the higher the
capacitance the stronger the effect. The curve represent-
ing the time variation of the current flowing through the
resistor follows the voltage curve in parallel.

7.13. For both directions of the emf applied to the trans-
former, the current is limited by the diode introduced
into the circuit in the blocking direction. This current is

1\ / \
__J U

(a)

LA 5l

(b)
Fig. 7.13

!

(=)

caused by the motion of the minority (intrinsic) charge
carriers and reaches a plateau very rapidly as the voltage
is increased. The diode introduced in the conducting di-
rection does not limit the current. For this reason, the
oscillogram of the current in the primary circuit has the
form shown in Figure (a). Accordingly, the greater frac-
tion of time in each half-period (in each direction) the
emf induced in the secondary winding is zero. Only over
small time intervals when the current passes through ze-
ro does an emf emerge, first in one direction and then in
the other (Figure (b)). The oscillograms here are, of
course, only rough sketches, since they do not take into ac-
count the inductances in the transformer circuits. Note
that in modern semiconductor diodes the reverse current
is negligible, with the result that the problem is of purely
academic interest.

7.14. In some respects this problem resembles the pre-
vious one. lere, too, the current in the primary circuit is
limited 1o the saturation current in one of the diodes,
introduced into the circuit in the conducting direction
rather than in the blocking. In contrast to Problem 7.13,
the present one possesses a special feature that manifests
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itself in the initial section near the zero of the current
in the circuit. While in a semiconductor diode the current
increases with voltage almost lincarly in the initial sec-
tion, in a vacuum diode the voltage dependence of the

sinma
1or
0.6 |-

0.2

0 02 0.6 1.0 14
I (a)

(b)

AN ivie

(©
Fig. 7.14

current is described with sufficient accuracy by the three-
halves power law [ = KU3".

The constant K incorporates universal constants and the
distance between the electrodes in the diode. Since the
voltage varies with time according to the sinusoidal law,
the current flowing through the diode on the initial sec-
tion of the voltage increase must be written in the form

I = KU} sin®? wt

(the function f () = sin®2 o is depicted in Figure (a)).
Allowing for this dependence, we obtain the oscillograms
of current in the primary circuit (Figure (b)) and of the
emf in the secondary circuit (Figure (c)). Just as in the
previous problem, we have not allowed for the efiects
associated with the presence of inductances in the trans-
former circuits.
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8. Optics

8.1. If we introduce the notation I = f, 4 f, in the
lens formula

1 1 1
htETT
and perform simple manipulations, we get

o
b=tr=r -

To determine the minimum of I, we nullify the derivative

A 2h(h—=P—f
i, (h—FE

whence f, = 2F.
8.2. The lens formula that allows for the parameters
of the lens is
1,1 1 ty_ 1
(the sign of the radius of curvature is determined by the

direction from the surface and to the center of curvature).
The ratio of the principal focal lengths is

Lo  mp—t (8.2.2)

Fb na—‘i ?

where we have allowed for the fact that the radii of cur-
vature of bhoth lenses are the same. Formula (8.2.1)
can be transformed thus:

__hF
=57

On the curve representing the f, vs. f; dependence, the
value of F is determined by the position of the vertical
asymplote of each curve. However, a more exact value
can be obtained by drawing a straight line that passes
through the origin at an angle of 45° to the axes. In this
case the coordinates of the points of intersection of this
straight line with the curves yield f, = f; = 2F for both
lenses, while the ratios of these coordinates determine,
via formula (8.2.2), the ratio of ny, —1 to n, — 1.
8.3. The smaller the aperture, the lower the optical
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distortions caused by the large width of the beam of light
incident on the lenses of the objective. If the aperture is
very small, the optical properties of the camera closely re-
semble those of a pinhole camera, whose aperture, in lerms
of geometrical optics, can be as small as desired and
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Fig. 8.2

whose depth of focus extends from zero to infinity.
Actually, however, diffraction imposes certain restric-
tions on this ideal case. The limiting value of the diam-
eter of the aperture, D, is determined by the wavelength
of the light and by the distance from the aperture to the
photographic plate. Theoretical considerations suggest
that D must be close to the value for which only one
Fresnel zone fits into the aperture:*

D=4V M.

For instance, at A &~ 0.5 pm and f &~ 5 cm, the diameter
of the aperture is approximately 0.6 mm. Note that in
photography the size of the aperture is characterized by a
quantity known as the aperture ratio, or the ratio of the
diameter of the aperture to the focal length. Usually the
aperture ratio is marked by a fraction whose numerator
is unity (1/4.5, 1/5.6, 1/8, 1/11). In the example we are
discussing here the aperture ratio is equal to 1/80. In
cameras the smallest aperture ratio is practically never
less than 1/16, so that diffraction effects play no role in
the present problem and need not be taken into account.

* According to Rayleigh, the sharpest focus in a pinhole camera
is achieved when the radius of the aperture is 0.95 of the
radius of the zeroth Fresnel zone.
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8.4. The solution can be found from simple trigonomet-
ric reasoning under common assumptions and approxima-
tions:
sin oy & tan o) & oy, sin a, & tan a, X Ay,
o, = n, yla, x~ oy, Yla, x o,.

Whence,

Y2 __ @3

no oamn”
8.5. A ray Lhat enters the rod at an angle «, travels in
the glass after being refracted at an angle B given by
Snell’s law:

sin p = n1sin a. (8.5.1)

The ray falls on the lateral face of the rod at an angle that
is not smaller than the critical angle. From the figure
accompanying the problem it follows that this angle is
n/2 — PB. According to the critical angle condition,

sin (/2 — B) = cos f = n"L (8.5.2)

The maximal value of p at & = n/2, according to (8.5.1),
obeys the condition

sin p = 1/n. (8.5.3)

Squaring (8.5.2) and (8.5.3) and adding the squares, we
get

1> 2/n?,
whence

n}]/ 2.

The phenomenon of light “trapping” in a glass rod is widely nsed
in fiber optics. If the attenuation of light in the glass is low, the
ray can travel over great distances. Bundles of such rods (or fibers)
form cables over which data can be transmitted with a high accuracy
and a low level of noise. Internal organs of human beings can be
illuminated with the light transmitted by such fibers, which at
present is widely used in medical practice for diagnostic purposes.

8.6. The figure accompanying the problem shows that
after reflection from the first mirror the beam changes its
direction by an angle of 2ct, while after reflection from the
second mirror the beam changes its direction by an addi-
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tional angle of 2B. For the refracted beam to travel in the
direction opposite to the direction of the incident beam,
the sum 2a 4+ 28 must be equal to m, or o -+ P = w/2.

(a) (b) (c)

Fig. 8.6

In this case the angle between the normals to the mirrors
is

0 =n — (a+ P) = /2.

T/he angle between the mirrors must also be equal to
/2.

If instead of the (wo mirrors we take a prism (see Fig-
ure (a) accompanying the answer), then a beam incident
on the base of the prism al an angle o will enter the prism
al an angle P determined by Snell’s law. For the refract-
ed beam to leave the prism in the direction opposite to
the one of the incident beam after undergoing total inter-
nal reflection from the lateral surfaces of the prism, the
beam must fall on the base of the prism (after it has been
reflected by the second lateral surface) at an angle .
Figure (a) accompanying the answer shows that the beam
travels the same path as in the case of two mirrors, where-
by the angle at the apex of the prism must be equal to
nt/2. We see that a prism may also be used to reverse a
beam. For the beam to retain its energy after traveling
through the prism practically for all anglesof incidence, the
lateral surfaces of the prism must be metalized. If three
flat mirrors are positioned at right angles, as shown in Fig-
ure (b) accompanying the answer, it can be demonstrat-
ed that the beam of light may be oriented with respect
to the first mirror (on which it is incident) in an arbitrary
manner and yet the refracted beam will always be paral-
lel to the incident one. Instead of three mirrors we can
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use a glass tetrahedron with a right trihedral angle at the
apex and identical metalized lateral surfaces in the form
of right isosceles triangles (see Figure (¢) accompanying
the answer). A beam incident on the base of the tetrahe-
dron is reflected by the metalized surfaces and leaves the
tetrahedron through the base in the direction opposite
but parallel to the one of the incident beam. An optical
device of this type is known as a corner reflector.

8.7. The intensity of illumination of a surface that is r
distant from the source and forms an angle a with the in-
cident ray is

E - % sin o, (8.7.1)

where I is the intensity of the source. At the edge of the
table, according to (8.7.1),

E Ih

B IET OO
To find the naximum of £ we must nullify the derivative:

AE __p (R24-RPP =30 (RO
dh (R24-h?)3 == {),

whence
h=R/) 2.

8.8. The ratio of the sines of the angles is equal to the
ratio of the speeds of light in the media:

sin a,/sin o, = ¢;/c,.

The ratio of the wavelengths is equal to the ratio of the
speeds of light:

}\41/}:2 = 01/02.
Therefore

__ sina,
27 sina; UV

8.9. The_optical path difference, which determines the
interference pattern, is |z, — 2z, | /A. Since |z, — z; |
cannot be greater than a, the maximal possible number of
fringes on each side from the middle of the screen (i.e.
for z, > z, and for z, <C z;) is equal to the ratio a/A, while
the total number of fringes is 2a/A. Actually the number
of fringes that can be observed is considerably lower,
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since at z,—z, == a the interference fringes must lie in the
plane in which the sources lie.

8.10. As the source of light is positioned symmetvical-
ly in relation to the mirrors, its virtual images appear at
equal distances d Irom the
source and, as the figure
accompanying the answer

o

shows, 'IT\‘»;:
d — 2l cos (0/2). !
|
The source and its virtual :
images lie at Lhe vertices |
of an isosceles triangle. The |7
distance between the vir- &

tual images is
a = 2d sin (9/2), Fig. 8.10
or a =~ 2l sin 0.

The first interference fringes on a screen that is L distant,
from the mirrors are separated by a distance of

h = AM./a,

and, hence, the smaller the value of 6, the greater the dis-
tance h.

8.11. Since equal phase differences correspond to equal
optical path differences, we can write

(25 — 2y)/A == const, or 2z, — z, = nA,

where n is an integer. A surface whose poinls possess Lhe
properly that the difference in the distances [rom any
point to two fixed points (the foci) is a constant, constLi-
tutes a hyperboloid. The section of this hyperboloid by
any plane containing these sources results in two branches
of a hyperbola. The sections of the hyperboloid by planes
that are perpendicular to the straight line which passes
through the middle of the segment connecling the sources
are also branches of hyperbolas. For this reason, the
observed interference fringes have the form of hyperbolas.
8.12. When light is reflected from the upper boundary
of each {ilm, the phase of the wave changes to the opposite
or, as it is usually said, a half-wave is lost. The light that
passes Lhrough the film is reflected by the substrate, which
in one case has a refractive index greater than that of the
film and in the other, smaller than that of the film. When
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n, > n, a new change in the phase of the reflected wave
1o the opposite one occurs, while when »; << n, the phase
ol the reflected wave is relained. For this reason, the
places on oue film where light is observed correspond to
the dark places on the other film, and vice versa.

8.13. The difference
belween neighboring in-
terference fringes in air
. is delermined by the
i relationship

| ay = ho/2 lan a,

X

o
[

while for a liquid this
relationship is
a = M2 tan a.

) Since A = Ay/n, we can

cm—— o — 3 wrile a = ay/n.
N _W }m; 8.14. Interference s
- ——1 '"’h,

caused by the difference

(0 in pathsof the light rays

X that forms in the space

between the lens and the

fN cylinder. The interference

g fringes constitule bands
&% of equal width.

Lel usintroduce a sys-
tem of coordinates. One
axis, the x axis, is direct-

Fig. 8.14 ed along Lhe gencralor
of the cylinder that
passes through the point at which the lens touches the
cylinder, while the second axis, the y axis, is al right
angles to Lhe generator discussed above (sec Figure (a)
accompanying the answer). We draw a plane thal is
perpendicular to the z axis and passes at a disltance y
from the origin. Figure (b) shows the section of the lens
by the plane (curve /) and the section of the cylinder by
the plane (curve 2). The same figure demonstrates the
seclion of the lens by a plane that is perpendicular to the
z axis and intersecls the lens along ils diameter (dashed
curve J). From Figure (b) it also follows that the gap be-
tween the lens and the cylinder is
. re y* x4 y? y?
b hy—hy == 2R, 2R, 2R, 28, ¢
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Here, as usual, we assume the following approximations
to be valid:

r=V22Rh, y= V 2R,h.

After carrying oul the appropriate (ransformations we
gel
y*

@2 1 1
Sk T 2k (T,H—) =1 (8.14.1)

If we intvoduce the notation @* == 2R and b -
2hRR,/(R, — R,), then (8.14.1) assumes the form

x2 y2
=t
The interference fringes have the shape of ellipses (sec
Figure (c) accompanying the answer) in which £ is a pa-
rameter. In rveflected light, & = (2k + 1)/A (with A& -=
0,1, 2, 3, ...) for bright bands and A& =: kA for dark.
8.15. The scction of the cylinder segmeunt by a plane
parallel to the plane of the drawing is everywhere (he
same. For this reason, all points that have the same path
difference for the ray reflected from the lower surface of
the cylinder and the ray reflected from the upper surface
of the plate lie at the same distance from the cylinder’s
generator that touches the plate, with the result that the
interference fringes are in the form of straight lines
parallel to the generator. The method of determining the
distances between the sequential fringes closely resembles
the method of determining the radii of Newton rings. The
distances from the generator that touches the plate satisfy
the same conditions as the radii of Newton rings do,
namely,

h—;”l//‘RK /cl~1

for bright bands in reflected light and dark bands in
transmitled light, and

h—V Rk

for dark bands in reflected light and bright bands in
transmitted light. As we move away from the generalor,
the distances between neighboring bands become smaller,
just as the radii of Newlon rings do.
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8.16. The width of the air gap between the lens 'an(l the
plate is the sum of the thickness of the lens section and
the particle thickness:

re

ho-hyta-== ik |-a,
where r is the radius of the ring being observed. A bright
ring whose number is & is observed al

2k-1-1 A

h———--.
2 2

Thus,

e i’iz‘_‘ M — 2Ra.

If the numbers of sequential rings are laid off on the
horizontal axis and the square of the radii of the corre-
sponding rings, on the vertical axis, we obtain a straight

line (see the figure accompanying

r the answer) whose slope is equal
| to the ratio of the difference of
| squares of radii of two neighbor-
|
|

|| ing rings to the product AR,
| that is, (. — ri_,)/AR. Knowing
Bk ko k R we can find A. Note that
Fig. 8.16 in this method there is no differ-
ence  between bright and dark
rings, and knowing the exact number of a ring is notl
necessary. For this reason, in the figure accompanying
the answer we have assigned a number % to an arbitrary
ring, while the numbers k¥ — 1 and & -+ 1 are assigned to
the neighboring rings.
8.17. To construct the interference fringes, we draw
a number of straight lines parallel to the plate in such
a way that the distances between them aloug the vertical
line are equal Lo one-hall of the wavelength. The points
at. which these straight lines intersect the substrate (in-
cluding the surface of the ledge) delermine the position
of the interference fringes of equal width. Analyzing Lhe
position of the fringes oblained here, one can establish
that from the wider side of the wedge (in the fignre accom-
panying the problem, on the right) the distance between
the fringes, or bands, is smaller (for any value of 6)
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than over the flat sections of the substrate. The distance
between the fringes from the narrow side of the wedge
(on the left) can be cither sinaller or greater than the
distance over the flat sections depending on the relation-

ship between 6 and a. For
0 > a (see Figure (a) ac- /
companying the answer), { .
) AN
(a)

0=a-+ p.

The left side of the ledge

acts as a substrate and ik
e, et wnge. 1 1T 1T T
plate, that is, a wedge. If b '
0 > 20, then P > a and
the distance between the
fringes is smaller than that
between the fringes over N
the flat section of the plate. o2~
This case is depicted in 77
Figure (b) and corresponds

to the case depicted in the Fig. 8.17

figure accompanying the

problem. But if 8 << 2a, we have f <o and Lhe {ringes above
the left side of the wedge are separated by a distance
greater than that separating the fringes over the flat
section of the plate. For 8 << & (sec Figure (c) accompa-
nying the answer), the left side of the wedge also acts
as a substrate and forms a wedge with an angle f < a
with the plate. In this case, too, the distance between
the fringes is greater than that between the fringes over
the flat section of the plate.

8.18. The interference fringes in the wedge constitute
bands of equal width. Ledges diminish, while dents in-
crease the width of the air gap where the path difierence
of rays is formed. For this reason, at the points of a ledge
the path difference is the same as at the points of the
wedge closer to the narrow part of the gap, while at the
points of a dent the difference is the same as at points
closer to the wide part of the gap. For this reason, the
interference pattern depicted in Figure (b) accompanying
the problem corresponds to a ledge, while that depicted
in Figure (c) corresponds to a dent.

8.19. The intensity of illumination at the center of the
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second screen is determined by the number of Fresnel
zones into which the section of the wave surface limited
by the hole in the first screen can be partitioned. If this
number is not large and is even, the light is practically
absent from the center, while if the number is odd, light
is observed at the center. If a is the diameter of the hole,
A is the wavelength of the incident light, and z is the
distance between the screens, the number of Fresnel
zones is determined by the expression

k = a*/4)z.

As the distance between the screens is increased, the
number of zones assumes alternately odd and even values,
and this is accompanied by an increase or a decrease
in the illumination at the center of the diffraction pattern.
Since the number of zones continuously decreases as z
gets larger and larger, the limit distance is the one at
which k& becomes equal to unity, that is,

z = a®/4h.

At adistance greater than this value, the intensity decreases
monotonically, and for z>> a*4A the intensity changes
in inverse proportion to z%, that is, just like for a point
source.

8.20. When the central Fresnel zone and several neigh-
boring zones are screened, the light intensity at the center
of the geometric shadow is exactly the same as if one-half
of the first nonscreened zones was acting. The calculation
is carried out in the same manner as when there is no
obstacle, the only difference being that the calculation
of the overall action of the Fresnel zones starts not from
the zeroth (or central) zone but from the first nonscreened
zone. Therefore, a bright spot is always observed at the
center of the screen irrespective of the distance to the
obstacle or of the wavelength of the light wave (the only
requirement is that the number of zones screened by the
obstacle be moderate).

A theoretical description of the formation of a bright spot at
the center of the geometric shadow was first carried out by Poisson,
who used it as an objection against the wave theory of light, since
he assumed that such a spot could simply not exist. But an experi-
ment carried out by Arago proved without doubt that such a spot
does indeed exist. Actually, this spot was discovered roughly a
hundred years earlier by Maraldi. Curiously enough, the spot was
later named the Poisson spot.
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8.21. The maximum condition in the spectrum of a
diffraction grating is

¢ sin ¢ = k.

Longer wavelengths correspond to larger angles. The
figure accompanying the question shows that the position
of the second-order maximum of the line A, is close to
that of the third-order maximum of the line A,. Therefore,
csin ¢ = 2\, & Ay, Whence, Ay/A, =~ 1.5.

8.22. The condition for a first-order dififraction maxi-
mum to occur is

¢ sin @, == A.

For the highest-order maximum we have ¢ sin ¢q, — kph,
whence
__ sin @py
mT" sin @

Since the value of sin ¢, cannot exceed unity,

_1
sing; °

m (8221)
If &k, contains both an integral part and a fractional
part, the latter must be discarded irrespective of its
value. For instance, if in the first order the line is observed
at an angle of 8.36°, formula (8.22.1) yields k,, =~ 6.88.
The maximal order, therefore, is k, = 6.

8.23. The angles that determine the position of the
first maximum for both gratings are the same, which means
that the gralings spacings are the same. To estimate the
resolving power, we must find the ratio of the wavelength
at the maximum of a line to the difference between this
wavelength and the wavelength corresponding to a neigh-
boring minimum. For small angles the sine function may
be replaced with the angles, so thal

Pmax ~ Amaxs @myn & Amin-

The resolving power,

§— A

xmax—‘ Amin !

is equal approximately to 25 for grating 7 and 10 for
grating 2.
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8.24. The resolving power of a graung is
§ = kN, (8.24.1)

where NV is the gencral number of lines (or grooves), and
k is the order of the spectrum. The maximal resolving
power is determined by Lhe maximum possible order of
the spectrum:

Fyax = c/A. (8.24.2)
Substituting (8.24.2) into (8.24.1) yields
6 = cN/A. (8.24.3)

Since the product ¢V is the same for both gratings and the
observed spectral lines arc the same, the resolving power
of the two gratings must also be the same. A small differ-
ence in resolving powers determined via (8.24.3) can he
caused by the fact that the exact form of (8.24.2) must be

Emax << ¢/A, (8.24.4)

whence
Oax << cV/A. (82/15)
Since only the integral parls are Laken in (8.24.4) and

(8.24.5), the values of 6.4 of the two gratings may differ
somewhat.

Fig. 8.25

8.25. The path difference between the rays from two
neighboring slits is determined, as illustrated by the
figure accompanying the answer, for direction 7 by the
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d%ﬂ'cronue between the segments AB and CD, and for
direction 2, by the difference between AB and CcD,.

Accordingly, the path diffcrences for directions 7 and 2
are

8 = d (sin 0 — sin ¢;) and &, = d (sin ¢, — sin 0),
or

\ . 0-]-¢ . O-—q
— ] cos ) o 1
0, == 2d cos ( 3 ) sin ( 5 ) ,

D7 i 0-- ¢y N ¢1—0
b, = 2d cos (—2—) sin (—2—) .

Thus, the diffraction maximum conditions can be written
thus:

. 0-|-9 . 0-q .
) — 1 . 1 e ]
2d cos (—z——) sin (——2 ) = [kh,

2d cos (q—zzﬂ) sin ( %240 ) = k..

In the first approximation we can assume that 0 4- ¢, ~
¢y, 4+ 0 =~ 20. Hence,
dceosO X (0 — ¢,) =~ kh, dcost X (9, — 0) =~ kh.
(8.25.1)
This formulas have the same form as for the case of normal
incidence of light on a grating with spacing d cos 0.
The maximum order of the spectrum in which the wave-
length A is observed is
k = d cos 6/A,
while the longest wavelength (¢ = 1) is
A = dcos 6.

The dispersive power can be conveniently expressed in
terms of the angle with respect to the direction of the
zeroth maximum, 0 -—— ¢, and ¢, — 0. 1f by ¢ we denote
these differences, which are close in absolute value, we
find that

dy k

dh ™ dcosBcosy

At angles 6 close 1o 90°, the dispersive power of the grating
may be considerably higlier than for normal incidence of
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light on the grating. However, the maximum dispersive
power is 1/A cos v, just as for normal incidence.

8.26. If we assume that the difiracted rays are reflected
in the plane of the graling just like in a mirror (see the
figure accompanying the answer), we arrive at a pattern
similar to the one obtained in the answer to Problem 8.25.

Just like in the case of oblique incidence of the rays on
the graling, the dispersive power increases with a coef-
ficient of (cos0)-1.
8.27. According to Brewster’'s law, when light is re-
flected from a dielectric, complete polarization occurs
when the tangent of the angle of incidence is equal to the
refractive index of the medi-
um reflecting the light. Since
when light propagates in air
and falls on a dielectric the
refractive index is always
greater than unity, we have
tan o > 1, or a > 45°.
Fig. 8.28 8.28. Refracted light is po-
lavized only partially. Light
that is practically completely polarized can be obtained
if one uses a stack (see the figure accompanying the answer)
of parallel plates whose surfaces arc oriented al the Brew-
ster angle to the incident light. Light becomes partially
polarized as it is refracted by the first plate, and as it
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travels from one plate to another, it hecomes more and
more polarized.
8.29. The ratio of the wavelengths is determined by the
ratio of the speeds of propagation of the two waves:
A/ho = celc,,.
At the same Llime,
CeCo = sin P, sin B,.
Hence,
A/hg = sin Be/sin Py, Ao > A,.
8.30. The figure accompanying the answer shows the

directions of the incident and scattered light and the
planes in which the oscillations of the electric field vector

b

K

Fig. 8.30

lic. In the scattered light the oscillations must occur
simultancously in plane a, which is perpendicular to
direction 7, and in plane b, which is perpendicular to
direction 2. This, obviously, may happen only if the
oscillations take place in the directions designated by
arrow 3. The blackening of the walls of the pipe, which
was mentioned in the statement of the problem, is nec-
essary so that no reflection can occur, since otherwise
various directions of propagation of the light might
become possible.

8.31. In the direction of the optic axis, the speed of
propagation of the extraordinary and ordinary waves
is the same and therefore the axis is perpendicular to the
plane tangent to both wave surfaces al the point where
the surfaces touch. In the first case (see Figure (a) accom-
panying the problem) the optic axis is parallel to the
crystal boundary, while in the other (Figure (b)) it is
perpendicular to the boundary. Since in all directions
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except the optic axis the speed of the extraordinary wave
is higher than that of the ordinary, by the common no-
menclature the crystal is negative.

8.32. After the light has passed through the first Nicol
prism, its intensity becomes /, = (1/2) I, (it is assumed
that the extraordinary wave loses no intensity when it
is reflected and when it travels through a Nicol prisin).

€, According Lo Malus’ law, after the light
. has passed through the second Nicol
ﬂ \ prisin the intensily becomes
\
N I, =1,co8*0 = (1/2) T, cos? 0.
\
\ The figure accompanying the answer
(5 _# &  shows the direction of oscillations of
the electromagnetic field vector in the
&

electromagnetic wave after the wave has
Fig. 8.32 passed through the first Nicol prism,
E;, and after the wave has passed
through the second Nicol prism, E,. In the reverse direc-
tion the clectric field vector will be retained after the
reflected wave has passed through the first Nicol prism
but will change to E, cos 0 after the wave has passed
through the second Nicol prism. Accordingly, the inten-
sity after the light has passed through the two Nicol
prisms in both directions will be

I, =1,c0s*0 = I, cos* 0 = (1/2) I, cos* 0.

8.33. The sense of rotation of the polarization plane
depends on the direction of propagation of light in relation
to the direction of the external magnetic field. For an
overwhelining majority of substances (“positive” sub-
stances), the rotation is clockwise (looking in the direction
of the ray of light) if the direction of propagation of light
corresponds with that of the external magnetic field, and
counterclockwise if the two directions are opposite. If
the directions of the light ray and the external magnetic
field coincided when the light passed from Lhe source to
the mirror and, therefore, the polarization plane rotated
clockwise, after the light is reflected by the mirror the
directions of the light ray and the external magnetic
field are in opposition and the polarization plane rotates
counterclockwise. If one views this process from the
mirror, the rotation sense coincides with the clockwise
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rotalion of the polarization plane when light passes in
the primary direclion. As a result, the two rotalions ape
added and the angle doubles.

8.34. Ib the Kerr effect, the difference of the refractive
indices of the extraordinary and ordinary waves obeys
the law

ne — ny, = kE?, (8.34.1)

where % is a conslant characterizing the medium. Since
the clectric field strength is squared in (8.34.1), the
difference n, — n, does not depend on the dircction of
the electric field. The optic axis in nitrobenzene coincides
in direction with the electric field vector. The path differ-
ence between the ordinary and extraordinary rays,

6 =1 (n, — ny) = kE?

(L is the length of the light path in the nitrobenzene), is
also independent of the direction of the electric field
veclor, whereby the optical pattern caused by the emerg-
ing eclliptical polarization will not change under reversal
of direction of electric field.
8.35. According to classical theory, when a source of
electromagnetic waves moves toward the observer, the
ratio of the perceptible frequency to the frequency of
the light emitted by a fixed source is

Vel 1

IV T

with B the ratio of the speed of the source to the speed of
light. According to the theory of relativity, this frequency
ralio does nol depend on whether the source or the observer
is considered fixed and

Vtr _ /1'{_5

Vo 1—p -
The vip-lto-ve ratio is given by the formula

RIRR V) g3

Vel

Hence, the upper curve corresponds Lo classical-theory
results, while the lower curve corresponds Lo the theory-
of-relativity results. For p < 1 the difference between
the two formulas is moderate (e.g. at § = 0.1 the difler-
ence amounts only to 0.5%).
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8.36. The ratio of the ion velocity to the speed of light,
P = vlc, in the case at hand is of the order of 10-*. For
such values of p the difference between the classical and
relativistic formulas for the Doppler effect is negligible.
If the source moves with a velocity v, the wavelength
of the light measured by the receiver is

A=Ay =0T = Ay (1 & vle).

Here A, is the wavelength of the light emitted by a fixed
source, and the plus sign corresponds to the case where
the source is moving away from the receiver, while the
minus sign corresponds to the case where the source is
moving toward the receiver. The difference in wavelengths
measured from both sides of the tube with the plasma in
which the ions move is

AN = 21, (ve),

which yields the following formula for the velocity of the
ions:
Y
U= -m C.

Since the ions have different velocities, each observed
spectral line is blurred, or broadened. The maximal
intensity corresponds to the most probable velocity,
while the extent to which the line is blurred characterizes
the velocity distribution of the directional motion of
the ions.

8.37. Since the velocities of atoms are much lower than
the speed of light, we can employ the classical formulas
for the Doppler effect. As shown in the answer to Prob-
lem 8.36, the difference in the wavelengths of the waves
emitted by two identical sources that move with veloc-
ities of Lhe same absolute value but pointing in opposite
directions in relation to the receiver constitutes

AN = 2), (Vc),

where A, is the wavelength of the wave emitted by a fixed
source, and ¢ is the speed of light. In alight-emitting gas,
the atoms move with different velocities, in accordance
with the Maxwellian distribution law. The higher the
temperature, the more extended is the distribution in
the direction of higher temperatures, therefore the higher
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the temperature, the broader the spectral line. Hence,
curve 2 corresponds to a higher temperature.

8.38. In accord with the Doppler principle, the distri-
bution in wavelengths of the intensity of the emission
lines of excited ions reflects the velocity distribution of
the ions (and hence the energy distribution of the ions,
too). However, this distribution cannot be associated
with the temperature of the gas. The fact is that the
motion of ions in the discharge plasma (which is the source
of radiation emitted in the tube) is highly anisotropic;
this anisotropy is determined by the electric field strength
in the tube. The electric field in the tube has a radial com-
ponent directed from the axis to the wall. On the axis
this component is zero; it increases as we approach the
wall. This field imparts a directional velocity to the ions.
Thus, the left half of the curve in Figure (b) (shorter
wavelengths) corresponds to the ions moving away from
the axis toward the spectrograph, while the right half
corresponds to the ions moving away from the axis in the
opposite direction.

8.39. According to Kirchhoff's law, the ratio of the total
emissivity of a heat radiator to the absorption coefficient
(immissivity) of that same radiator is the same for all
objects, constitutes a universal function of the tempera-
ture, and is equal to the total emissivity of a black body:

erlar = Er.

Hence, an object with a higher absorption coefficient has
a higher emissivity and, therefore, it loses the energy
acquired during heating at a higher rate. Curve 7 (see
the figure accompanying the problem), therefore, repre-
sents the change of temperature in cooling for the object
with the lower absorption coefficient or, in other words,
curve 2 represents the cooling off of the object with the
higher absorption coefficient.

8.40. The average kinetic energy of a molecule of the
gas in translational motion is

w=—2—kT,

where % is the Boltzmann constant. 1f the concentration
of the molecules in the gas is n, the volume density of the
energy of the molecules is

Uy = —z-nkT.
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The volume density of the energy of blackbody radiation,
according to the Stefan-Boltzmann law, is

Up —-i—oT“.
If we set uy, equal to u,, we get

T (Snke ), (8.40.1)

We will illustrate the above result with two examples.
First, suppose that the concentration of the molecules
is the same as that at S.T.P. conditions (T = 273 K,
p = 101 325 Pa). This concentration (the Loschmidt
number) 7 is equal to 2.686 X 10% m-3. Substituting into
(8.40.1) the values k£ = 1.3807 x 10-2 J/K, ¢ =
2.9979 X 10® m/s, and o = 5.670 X 10-®* W.m-2.K-4,
we [ind that

T =9.03 x 10° K.
Under these assumptions, the gas pressure is
p = nkT = 3.35 X 10® Pa = 3300 atm.

In the second example, we wish to find the concentra-
tion of the molecules of the gas if the temperature at which
the energy density of the translational motion of the
molecules is equal to the energy density of electromagnetic
radiation is to be equal to 0 °C. Equation (8.40.1) yields

n="7.42 X 104 m-3,

This concentration yields the following value for the
pressure of the gas:

p = 2.8 X 10-¢ Pa.

8.41. The emissive power over a definite wavelenglh
interval is
A2
AEp— | Expd.
A

Since the integral is the area under the curve limited
by the ordinates corresponding to the lower and upper
values, the emissive power per each interval is the same.
The energy of the quanta corresponding to greater wave-
lengths is lower, whereby even for the same emissive
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power there are more quantaof lower energy (i.e. referring
to S,).

8.42. Contrary to Wien’s displacement law, the maxi-
mum in the blackbody radiation distribution corresponds,

for a higher temperature, to a longer wavelength rather
than to a shorter wavelength.

8.43. The relationship that exists between the radiation
function and the volume radiation density is

EvT = uv'1'0/4-.

The radiant emittance over the frequency range from v,
to v, is determined by the integral

v

AE, ,— S Eyp dv,

Vi
and, hence, the volume radiation density over the same
range is

v

(%)

Auy,, = —64— Eyrp dv.

<e ——p

1

8.44. The thermal radiation emitted by a body cannot
exceed the blackbody radiation over all possible wave-
length intervals. Contrary to

this theoretical fact, the ex- Ga

perimental curve contains a 05

section that lies above the M
curve representing blackbody 03k | |l
radiation. | |

8.45. According to Kirch- | |

hoff's law, oi 'L |

e,‘/a,, = EA» 0 Ay A, A

where E, and e, are the res- Fig. 8.45

pective radiant emittance of

a black body and a given object (which is not a black
body), and a, is the absorption coefficient of the object.
Therefore, the ratio of the ordinates of curve 2 to those
of curve I yields the value of a, for each wavelength. On
the segment from A = 0 to A, the value of a; remains
constant and equal to 0.5. The same happens on the seg-
ment from A, to A = co. On the segment from A; to Ay
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the value of a, passes through a minimum, as shown in
the figure accompanying the answer.
8.46. Since

dE dE

By Bamqrr and ==
we have
dE dA ¢ dE c
Ev=g &= "wam o Er

To compare the maximal values of £, and E,, we take
the derivative

dEy  2c ¢ dE, _ dL';,
= B e = (2B )

At the maximum of E, the second term is zero while the
first is not. Thus, at the wavelength A, the frequency

e (%)

03
02

01r

0

20 22 24 26 28 30«
Fig. 8.46

does not correspond to the one at which £, is maximal.
The maximum occurs at d£,/dA negative, that is, in the
section where E, is falling off.

To find the frequency v, at which £, has its maximum,
we must take the derivative of the Planck function with
respect to v, or

2[ ( hv 1 hv3 ( hv
dE, 2nn ) 3V|exp kT) T %T eXP _T)

v [ee (57) 1]

Nullifying this derivative, we arrive at a transcendental
equation for Av/kT:

hv
hv/RT —_—) =
e ( T ) 3.
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This equation can be solved graphically by constructing
two functions,

y, = e ®kT  and y, =1 — hv/3kT.

An approximate determination (via the intersection point
of the two curves) yields a value of 2.82 for hv,/kT.
A more exact calculation yields

hvi/kT = 2.8214,
or

hvp = 3.896 X 10-2 T. (8.46.1)

From (8.46.1) it follows that Wien’s displacement law
can be written in the form

vm = 9.879 X 101 T,
The frequency vy, corresponds to the wavelength (we de-
note it by A (vp))
A(vp) = 5.10 X 102 T-1,
Thus,
A (v)Am = 1.760.

8.47. The volume densily of the energy of blackbody
radialion over the frequency range from v to v -+ dv
is determined from the Planck formula

8mhv3 1
du =—3;
c hv
exf’( kT )'1

The energy of each quantum in this range is Av. Thus, the
distribution function for the number of quanta over the
energy of one quantum has the form

dv.

dhv — c2m8 exp [hv/(kT)]—1 *

Introducing the dimensionless parameter o = hv/kT,
we can represent (8.47.1) in the form

dn 8rti3 a?
na=—d7=-c37' T3 e°‘__1 . (8.47.2)
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o=

The total “concentration” of the quanta can be oblained
by integrating (8.47.2) with respect to a from zero to
infinity, and the result is

n =

Bk? g S o de (8.47.3)

c3h3 e®—1

The integral in (8.47.3) can be reduced to tabulated func-
tions (it can also be evaluated by expanding it in a power

series). The value of the integral is 2.404, with the result
that

n— SX2ZAVATES gy 9 (198 v 107 T3.

o313

In relative units of (1/r) dn/da, the energy distribulion
function for the quanta is presented in Figure (a).

a
3

!

ol

M (s)
05

04

Tig. 8.47

Since the total energy density of blackbody radiation
energy is

" "—f T4 .= 7.57 % 10716 T4

(o is the constant in the Stefau-Boltzmann law), knowing
the total number of quanta (see formula (8.47.3)) we can
determine the average energy of a single quantum:

hv:iv :% X 10737 = 3.73 ~ 107237 === 2.70kT.

The distribution function given by (8.47.2) enables finding
the energy of the “most probable” (uantum, that is, the
quantum whose energy corresponds Lo the maximum in
the distribution function. To this end one must nullify
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the derivative dng/da. This leads to the transcendental
equation

(2 — a)ex = 2.

An approximate graphical solution (Figure (b)) yields
2 = 1.6. A more exact value is a = 1.594. Hence,

hvy = 1.594kT,

In the answer to Problem 8.46 it was shown that the
energy of the quantum corresponding to the maximum
ol the function £ is hvy, = 2.8214kT. Wien’s displace-
ment law can then be used to determine the cnergy of the
quantum corresponding to the maximum of the function:

7 (M) =S T - 6.855KT .

Note that the average kinetic energy per one degree of
freedom of an ideal gas is w = 0.5kT.

8.48. At first glance it appears that the question is
meaningless. Just think, how can one heat something
that does not exist? Actually, however, space is always
fitled with electromagnetic radiation, whose energy is
determined by the Stefan-Boltzmann law:

u—29 74, (8.48.1)

If we imagine a region in space bounded by a shell that
radiation cannot penetrate cither from the outside or
from within (and inside the shell a perfect vacuum is
maintained), then the electromagnetic radiation inside
the shell must be in thermodynamic cquilibrium with
the shell. To raise the temperature of the shell. we must
supply an amount of heat determined not only by the
heat capacity of the shell but also by the neccessary in-
crease in the density of energy of the electromagnetic
radialion inside the shell. If we define the volume specific
heat capacily as
1 dQ _ du
Cvol = qr T ar

and use formula (8.48.1) to find the derivative. we get
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8.49. If the intensity of the light is I, the number of
photons of monochromatic light incident every second
on a surface of unit area is

N = I/hv.

The momentum of each photon is Av/c. When hitting the
surface, a photon transfers a momentum hv/c to the surface
if it is totally absorbed or a momentum 2hv/c if it is
totally reflected. The pressure exerted on the surface is
equal to the sum of all momenta transferred to the surface .
per unit time. In the case of absorption,

If a fraction of the photons are absorbed and the rest are
reflected, the latter process being characterized by a
reflection coefficient R, then the
pressure exerted by the light on
the surface is

p=L(+R).

% This formula coincides with (8.49.1),

which was obtained on the basis
of the electromagnetic theory of

light.
8.50. Let us assume that such

radiation has been obtained and

L

'I is directed onto a mirror that is a

Fig. 8.50 paraboloid of revolution, with the

rays of light being strictly parallel

to the axis of the paraboloid (see the figure accompanying
the answer). Since planes that are perpendicular to the
rays are wave surfaces, all points in a single plane are
in the same phase of oscillation (irrespective of the nature
of the oscillation). All rays parallel to the axis converge
(after being reflected) at a geometric point that is the
focus of the paraboloid. The geometrical properties of
a parabola imply that the sum of distances from any
point in a plane that is perpendicular to the axis to the

31



parabola and from the parabola to the focus is a constant.
This means that the oscillations that arrive at the focus
from all points in a wave surface are in phase. Hence, all
radiation that travels to the paraboloid will be concen-
trated at a single point and the volume energy density
of the radiation will become infinite at that point. This
would make it possible to obtain (theoretically) infinite
local temperatures at a finite temperature of the radiation
source that provides the flow of plane waves.

The picture can be reversed, that is, we may ask our-

selves: what requirements must a source meet for it to
produce a stream of plane waves? Taking into account
the reversibility of light rays, we conclude that such
a source must be concentrated at a geometric point. At
present quantum electronics can produce radiation with
extremely low angular divergence, something on the
order of 102 or even 10~3 of one second of the arc and,
respectively, with colossal local power outputs. But even
in this case the rays in such radiation cannot be con-
sidered strictly parallel.
8.51. The photon energy transferred to an electron in the
metal is used to overcome the potential barrier at the
boundary of the metal (the work function P) and part
of it is lost inside the metal. In addition, one must bear
in mind (hat not only the electrons that occupy levels
Iving near the Fermi level participate in the photoeffect.
In addition to these, there are electrons that move some-
what slower and, hence, require for their liberation ener-
gies greater than the external work function. Therefore,
Einstein’s equation can be written in the form

h =44 P+ W,

where A is the term characterizing the energy losses
inside the metal and the additional energy necessary for
the electrons lying below the Fermi level to become
liberated. The photoelectrons that escape from the surface
of the metal have the maximal energy (4 =: 0); the initial
energy of such electrons corresponds to the Fermi level:

Wy = hv — P.
8.52. According to Einstein's equation,
hv = P + mup/2,
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where v, is the maximal energy of the photoelectrons,
and P is the work function of electrons ejected by the
cathode. To stop the photoelectron current, we must
apply a stopping potential no smaller than Ustop, Which
is determined from the equation

mum/2 = eUgyop,

where e is the clectron charge. Thus,
hv = P + eUgqop.

For a known value of e, the slope of the straight lines,
dUgyop/dv == hle, determines the Planck constant. The
straight lines are different because they correspond to
cathodes with different work functions. The work function
can be determined cither by the point of intersection of
a straight line (for a particular cathode) with the hori-
zontal axis,

P = hv,

(with v, the photoelectric threshold), or by the point of
intersection of the straight line with the vertical axis,
P = —‘EUsmpO'

8.53. According to the hypothesis, the illuminated elec-
trode emitls photoelectrons whose maximal energy is
Wy = he/lh — P,

which makes it possible to think of the system as an emf
source, with the maximal value of the emf heing

& = W,e. (8.53.1)

This source can generate a current in the circuit; the cur-
rent. is determined by the intensity of illumination of the
electrode but cannot exceed a value of

I, = &R.
At the same time, the current cannot exceed the value
I = Ne,

where &V is the number of electrons ejected by the cathode
per unit time due to illumination of the cathode with
light. Since according to (8.53.1) the emf{ is constant and
so is the value of R, the interclectrode gap may be con-
sidered as a resistance ry,, whose value is the smaller
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the greater the intensity of the light. In darkness this
resistance is infinite. Bearing all this in mind, we can
write

I =&/(R + rya0).

8.54. The stopping potential difference, that is the vol-
tage at which the photocurrent ceases, is the same for
both cases. This potential difference determines the
maximal photoelectron energy and equals the difference
between the photon energy and the work function; hence,
the emission frequency for the two sources is the same,
and the sources differ only in the intensity of the radi-
ation they emit.

8.55. According to Einstein’s formula, the work func-
tion is equal to the difference between the photon encrgy
and the maximal kinetic energy of the photoelectrons:

P = hv — m2/2.

The higher the maximal energy of the photoelectrons,
which energy is equal to the maximal stopping potential,
the lower the work function. In the case at hand, the
cathode whose current-voltage characteristic is repre-
sented by curve 2 has a higher work function.

8.56. The point that an electron can reach thanks to
their initial kinetic energy is determined only by the
value of the stopping potential difference. [rrespective
of the distance between the electrodes, the point is always
at the middle of the interelectrode gap, and only such
a distance can the fastest electrons leaving the cathode
cover.

8.57. In Compton scattering, the photon wavelength
changes by

h
A}\,:m—ec('l — CO0S O).

We see that in the case of angle 0, the wavelength increases
by a larger quantity. Hence, hv, << hv,. As a result of
scattering, the photon transfers a fraction of its energy
to the electron, and the energy that the electron receives
is the greater, the smaller the cnergy of the pholon after
scattering, and hence the greater the value of 0 is.
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9. Atomic and Nuclear Physics

9.1. The protons move toward each other until their
relative velocity becomes equal to zero. When the velocity
is zero, the incident proton slows down and the immobile
proton begins to accelerate, so that the distance between
the two protons starts to increase. According to momentum
conservation, when this happens, mv, becomes equal to
2mv, where v is the velocity of both protons at the moment
when the distance between the protons is minimal. At
this moment both the velocities and, hence, the kinetic
energies of the two protons are the same. The difference
between the initial kinetic energy of the incident proton
and the total kinetic energies of the two protons is equal
to the energy associated with the interaction between the
protons:

mv} —9 m(v/2): _  €?
2 2 T 4neyr
whence
o2
= Tegmid -

9.2. Assuming that ionization occurs as a result of a
completely inelastic collision, we can write

mv, = (m + my) u,

where m is the mass of the incident particle, my the mass
of a hydrogen atom, v, the initial velocity of the incident
particle, and u the final common velocity of the particle
after collision. Prior to collision, the kinetic energy of
the incident particle was

Wy = mvl/2.
The total kinetic energy after collision is

_ (m+mg)u? m2y?
W= 2 = 2 (mtmp

The decrease in kinetic energy must be equal to the ion-
ization energy:

— = _MH
Wo—W=W;= g 0

The greater the mass of the incident particle, the smaller
the fraction of the initial kinetic energy that can be used
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for ionization. When an electron is used as the ionization
agent, the initial kinetic energy of the electron is almost
completely used for ionization. When an accelerated ion
of hydrogen is used for iomization, the initial kinetic
energy must double that of the electron, and when ion-
ization is initiated by a helium atom, the energy must be
five times that of the electron. This estimate explains
why in a gas-discharge plasma, ionization is initiated
almost exclusively by electrons, while ionization by the
proper ions plays practically no role.

9.3. The kinetic energy of Lhe eleciron in a hydrogen-
like atom is

medZ?
Wiin = gezpma
while the potential energy is
metZ?
Wpor=— Zezmmm -

As n grows (i.e. as the electron moves to higher levels),
Wyin decreases in inverse proportion to n2, while Wy
grows, tending to the maximal value of Wy,y = 0 as
n — oo. The total energy,

metZ?
W=~ geguns -

also tends to zero as n — co. The minimal value of the
total energy is

medZ?

W= T T8eZn?

Obviously, to detach the electron from the atom, the
following work must be performed:

A=Wmax"“Wm1n:0_ ( -

melZ2 ) _ metZ?
8e2h? |~ 8eZh? °

The ratio of this quantity to the elementary charge e is
known as the ionization potential. This is the minimal
potential difference that a particle of infinitely small
mass and carrying the elementary charge (practically an
electron) must pass for the given atom to become ionized.
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9.4. The wave number of the emission lines of a hydro-
gen-like atom (when an electron “travels” from one
quantum level to another) is given by the formula

~ 1 1

V=R2 (=) »
where R is the Rydberg constant. For a nucleus of infinite
mass,

met
Reo = 8ezhic *

For a nucleus that has a finite mass M we must substitute
the reduced mass

m

W=Trmm

for the electron mass m. Assuming that the electron energy
is zero at infinity, we arrive at the following formula for
the energy level with the principal quantum number n:
ch 1
Wo=—Re-5 1+m/M *

This formula shows that the greater the mass of the nucle-
us, the deeper are the levels of the nucleus and the greater
the separation of the levels and the higher the frequency
of the spectral line reflecting the transition between levels
with the same initial quantum numbers and the same
final quantum numbers. Of course, since m < M, the
difference between the corresponding values is small,
but for hydrogen and deuterium it is sufficiently high.
The aforesaid implies that system / belongs to deuterium
and system 2, to hydrogen.

9.5. An ionized helium atom belongs to the class of
atoms known as hydrogen-like, for which the following
general series formula is valid:

e (=)

where Z is the proton number. The Rydberg constant for
an atom whose mass is M is

1
Ry =Re TFm/ir - (9.5.1)

If we ignore the difference between the Rydberg constants
for hydrogen and a helium ion, then it can be assumed
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that the lines of Lhe first coincide with those of the second.
This occurs if

4 ( 1 _L) S S

Fhre  nhe Ky o ni”
In the Balmer series, & = 2. We set ny; = nyge = oco. Then
kliu =4 and Nye = 6, 8, 10, 12, . ...

In the spceetrum of a helium ion, between these lines are

the lines for which nyg, = 5, 7, 9, 11, . ... These lines

are also shown in the figure accompanying the problem.

We note, in connection with formula (9.5.1), that since

Ryue > Ry, the lines of a helium atom correspond to

slightly higher frequencies than the corresponding lines

in the Balmer series.

9.6. For a doubly ionized lithium atom, Z = 3. For

this reason the spectral lines of the lithium ion arc des--
cribed by the general series formula

~ 1 1

v=9R ().
For the Balmer series we have kg = 2, whereby only the
lines. of lithium that obey the relationship 9/k}; = 1/4
can be found in the visible spectrum. Hence

kLi[ =L6.

The last line in the Balmer series corresponds to a value
of the principal quantum number nyg being equal to 6.
The corresponding line for lithium exists at 9/n}; = 1/62,
that is, al

nii = 18.

Thus, in the spectral region of the first four lines of the
Balmer series the overall number of lines is 12 (ny; =
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18). The lines
withng; = 9, 12, 15, 18 lie close to the lines in the Balmer
series with ng = 3, 4, 5, 6. Since there is a small
difference in the values of the Rydberg constant, these
lines do not coincide exactly. The difference is somewhat
greater than in the case of the Pickering series.

9.7. The electric field in which the electron is moving is

E=——— 9.7.1)

4negre
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where 7 is the radius of the electron orbit according to Lhe
“classical” Bohr theory. In the ground state of the hydro-
gen atom, the radius of the orbit is r; = 5.29 X 10 .
Formula (9.7.1) then yields the following value for the
electric field strength:

E = 5.15 x 10" V/m,

which exceeds all praclically attainable field strengths
by several orders of magnitude. However, if an eclectron
is moving along a circular orbit which corresponds to
a value of the principal quantum number that differs
from unity, the radius of such an orbit is

— rop2
r = rn?,

and the electric field strength proves to be inversely pro-
portional to n% If, say, n = 10, the electric field lies
within the limits of practically attainable fields. Indeed,
the ionization of highly excited states of the hydrogen
atom by an electric field was actually observed in ex-
periments.

9.8. Optical transitions between the ground state of
helium and the 215 and 23S states are forbidden by selec-
tion rules. Although the selection rules that forbid such
transitions are not absolute, they nevertheless permit
defining the 215 and 23S states as metastable with life-
times of the order of 102 s, which is an extremely large
time interval on the scale of atomic processes. Excitation
to such levels is possible in a discharge almost exclusively
due to electron impact. What is needed for continuous
generation of radiation is inverted population of levels.
This becomes possible if the lifetime on the higher level
exceeds considerably the lifetime on the lower level,
with the result that the lower level has time to “get rid”
of the electrons before new electrons arrive. Indeed, the
lifetime of the 2S and 3S atomic states is of the order
of 10-% s, while the lifetime of state 2P is of the order of
10-8 s. In the first of the two transitions 35S — 2P and
28 — 2P the energy changes by a larger amount; hence
a quantum of a higher frequency corresponds to this
transition, and this frequency lies in the visible spectrum
(A = 632.8 nm), while the second transition corresponds
to a quantum with a lower frequency, A = 1153 nm, which
lies in the IR region.
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9.9. Since the length of all the veclors is the same, the
absolute values of the angular momenta in all the states
are the same, too. If the orbital quantum number is I,
the magnetic quantum number m may assume 2/ 4 1
different values. The figure accompanying the problem
shows five different states. Hence, I = 2. The value of I
cannot exceed n — 1, whereby the minimal value of the
principal quantum number is 3. The values —2, —1, 0,
+1, 42 of the magnetic quantum number correspond to
differenl orientations of the angular momentum vector.
9.10. In a uniform magnetic field, a magnetic dipole,
which is an object possessing a magnetic moment, expe-
riences only a torque. For a force to act on a magnetic
dipole, the field must be nonuniform. For an atomic mag-
netic moment this force is defined by the expression

F:u—ﬁz— ’ (9.10.1)

where p is the magnetic moment of the atom. Informula
(9.10.1) we assume that the vector of magnetic induction
of the magnetic field generated by the atom is oriented
along the lines of force of the external magnetic field and
its direction coincides with that of the induction B
of the external magnetic field or is opposite. In the first
case the atom is pulled into the region where the field is
stronger, while in the second case it is pushed out of that
region. In the Stern-Gerlach experiment, the beam of
silver atoms is sent through the (nonuniform) magnetic
field and splits into two beams in accordance with two
possible directions of the magnetic moment of a silver
atom. If there was no spatial quantization, the silver
atom would be oriented at random and the beam would
spread in all directions. The silver atoms in the beam
are in the ground state, whereby the difference in orienta-
tion is due to the different directions of the magnetic mo-
ment of outer electrons in silver atoms.

9.11. The minimal wavelength in the X-ray spectrum is
determined by the maximal energy which a bombarding
electron may transfer to the anode. This energy is eU
and, hence,

ch
)”mln: U *

If the voltage is decreased three-fold, the minimal wave-
length increases three-fold, too. As the figure accompany-
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ing the problem shows, as a result of such an increase in
the wavelength the short-wave peak, which is one of the
characteristics of the material of the anode, disappears.
Separate characteristic peaks may disappear even when
the wavelength corresponding to these peaks is longer
than Ann if to excite the quantum level from which the
transition that gencrates the radiation with the wave-
length of a particular peak begins an cnergy higher than
elU, is required.

9.12. In infinitely deep potential well, the wave func-
tion at the boundary of the well (x =0 and 2 = 1) is
zero. Since the figure accompanying the problem clearly
shows that the wave function does not vanish at the
boundary, we conclude that the well is of finite depth.
9.13. In a potential well of infinite depth the wave
function at the “walls” of the well must vanish. This
means that only states labeled by even numbers, e.g.
2, 4, 6, elc., may remain. The distance between the
nodes of a standing wave function is equal to one-half
of the de Broglie wavelength:

Ak
2 2mv
The maximal value of A is a, which meansthat the electron
velocity has a minimal value v = h/2ma, and hence the
minimal value of the eleclron energy is Wy n = h*/8ma>.
If the width of the well decreases two-fold, the minimal
kinetic energy of the electron in the well increases four-
fold.
9.14. If the initial kinetic energy of the electron in the
motion from left to right is Z, to the right of the barrier
it will be £ — P. In the first case the de Broglie wave-
length is

M=hl/} 2mE,
while in the second it is

hy=hlY 2m (E — P).

The wavelength ratio is in inverse proportion to the
refractive index ratio:

lz_—ﬂ—l/_E_P_
nl—;\.g— L *
AN
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The right region can be considered as being lessoptically
dense, whereby when the electron is moving from left
to right the phase is retained, while when the electron
is moving from right to left, the phase changes to its
opposite.

9.15. From the viewpoint of classical mechanics, for
E << P this probability is zero in both cases, while for
E > P it is equal to unity (“step” / in Figures (a) and (b)
accompanying the answer). From the viewpoint of quan-
tum mechanics, however, in the first case for E < P

P { D !

2 | —'_7_
/

A
(@) )
Fig. 9.15

the probability is also zero, whereas for £ > P the prob-
ability is lower than unity (curve 2 in Figure (a) accom-
panying the answer), since there is a nonzero probability
of the electrons being reflected from the step, in other
words, a fraction of the electrons moving from left to
right begins to move in the opposite direction. Partial
reflection takes place even when the potential energy to
the left of z, is greater than the potential energy to the
right of z, rather than lower. For the potential barrier
depicted in Figure (b) accompanying the problem there
is a nonzero probability of the electrons tunneling through
the barrier even when £ << P, but this probability does
not become equal to unity even when £ > P (curve 2
in Figure (b) accompanying the answer). The passage of
electrons through the potential barrier when E << P
under the conditions that the barrier has a finite width
and that the potential energy to the right of the barrier
is equal to or less than to the left of the barrier became
known as the tunneling cffect. This effect is encountered
in many atomic and nuclear processes and in the field
emission of electrons by metals and semiconductors. The
probability of electrons passing through the barrier for
I << P is the higher the lower and narrower the barrier.
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9.16. 1In region /1, the wave function does not obey the
sinusoidal law; it falls off exponentially. This happens
within the framework of classical mechanics when anegative
kinetic energy is assigned to the elec-
i tron, or I << P. The passage of the
| electron into region [III, which is
forbidden {from the classical stand-
| point, can be observed in experiments if
the width of region I is sufficiently
small (of the order of the electron wave-
length in region I) and if the differ-
ence between P and £ is not too great
(see Problem 9.15). This phenomenon
(the tunneling effect) resembles the
partial passage of light across a
narrow gap belween two prisms (see
" the figure accompanying the answer)
with the incident light experiencing total internal
reflection in the first prism.
9.17. The statement that the energy of the vibrational
motion of atoms or molecules in a crystal lattice is nil
at absolute zero contradicts one of the main principles of
quantum mechanics, the uncertainty principle. If the
kinetic energy is zero, so is the momentum. But if an
atom or a molecule is at rest, its position is fixed. In
other words, each coordinate and the projection of mo-
mentum on the respective coordinate axis are known with
absolute accuracy. Meanwhile the wave properties of
particles permit determining the collection of a coordinate
and the respective projection of momentum within the
intervals Ap, and Az, where in accordance with the un-
certainty principle

Ap Az > h/2n.

Fig. 9.16

For this reason the energy of the atoms or molecules of
a crystal is not nil at absolute zero. The motion of these
objects is vibrational (zero-point vibrations), and the
energy associated with this motion is the zero-point
energy

h

Eoz-;—h\’:'m(}),

where o is the natural cyclic {requency of the vibration
of a particle in the lattice. The existence of zero-point
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vibrations has been proved in experiments. They manifest
themselves in light scattering in crystals at temperatures
close to absolute zero.

9.18. The diffraction of electrons by a crystal obeys the
same Bragg law as X-ray diffraction does:

2d sin 6 = KA.

In this formula A = h/mv is the de Broglie wavelength.
Substituting the necessary constants (the electron mass
and charge and the Planck constant) and transforming
the units of measurement, we arrive at the following
formula*:

A=Y 1.5/U nm. (9.18.1)

According to this formula, diffraction maxima are ob-
served for thefollowing wavelengths: Ay (k = 1), (1/2) A,
(k= 2), (1/3) Ay (k = 3), etc., with the voltages that

determine the electron energy being U,, U, V2, U, V3,
etc. If on the horizontal axis we lay off the square roots
of the values of the accelerating voltage, as is done in
Figure (b) accompanying the problem, the current maxima
must be spaced by equal distances. In experiments,
however, this condition is not met exactly, and the smaller
the voltage the greater the deviation from this pattern.
The reason for this is that formula (9.18.1) contains the
energy (in electron volts) of an electron inside the metal,
and this quantity is the sum of the energy acquired by
the electron in passing the potential difference and the
difference in potential energies of the electron inside and
outside the metal. Therefore, along the horizontal axis
in Figure (b) accompanying the problem we must lay off

VU + @ rather than Vﬁ, where @ is the internal po-
tential in the metal. The quantity measured in experi-
ments is, of course, U. Electron diffraction patterns
obtained as a result of electron scattering on a metal
lattice make it possible to obtain .

* Here U is the potential difference through which the clectron
travels and, hence, the electron energy expressed in electron
volts.

9.19. The stability of a nucleus is ensured by the fa:t
that the Coulomb repulsive force experienced by €2
: . f nuclear
proton in the nucleus is equal to the force 0 5 falls
attraction (the nuclear force). The Coulomb for¢
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off with distance relatively slowly (in inverse proportion
to the square of the distance), while the nuclear force
falls off very rapidly. For this reason the protons are held
in the nucleus only by the closest neutrons, while expe-
riencing the repulsive action of all the protons in the
nucleus, even those farthest from a given proton. Thus,
as the general number of nucleons grows, more and more
neutrons are required so as to compensate for the growing
action of the Coulomb repulsive forces.

9.20. According to the Pauli exclusion principle, asingle
quantum level can carry no more than two identical
particles with half-integral spin. The directions of the
spins must be opposite. In a nucleus such particles are
the nucleons, protons and neutrons. Since these are dis-
tinct particles, there can be not more than four nucleons
on the lowest level —two neutrons and-two protons.
9.21. If N, is the number of radioactive atoms in the
radioactive sample at the beginning of counting and A

¥
10|
8»

6
5
4

(>

Fig. 9.21

is the decay constant, then at time ¢ after the beginning
of counting the number of atoms will be

N = N M, (9.21.1)
The rate with which this number changes is

av _ Mo
Tt—“ = )"N[)e == AN.
A counter registers only the radioactive particles that
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fly in its direction. The fraction of such particles in the
overall number of radioactive particles emitted by the
sample depends on the size and position of the counter
and can be characterized by a factor a (with a << 1).
Thus, the counting rate can be expressed in the form

dy
vy=a ’ T' =alN he-M,

Taking logs, we get
log v = log (alN,A) — At.

To determine the half-life of the radioactive element,
there is no need to measure the slope and find the A vs. ¢
dependence and, using the well-known formula, to cal- -
culate Ty ,,. Suffice it tolayoffin any place on the vertical
axis a segment equal to the logarithm of two (irrespective
of what logarithms are laid off on the vertical axis, base-10
or base-e) and draw through the end points of this seg-
ments straight lines parallel to the horizontal axis.
The points at which these straight lines intersect the
experimental straight line that represents the variation
in the rate of counting determine the boundaries of the
time interval in the course of which the counting rate
decreases by a factor of 2. Since the experimental law
representing the decrease in the counting rate with the
passage of time coincides with the law representing the
decrease in the number of radioactive atoms (9.21.1),
this time interval is the sought half-life.

9.22. A shift to the right by one place in the Periodic
Table occurs as a result of a beta decay act. The mass
number does not change in this act while proton number
increases by unity. Hence,

nam _"n-Hbm _l" —1[301 n +1bm - n+2cm + —150-

A shift to the left by two places occurs in alpha decay.
The mass number decreases by four, while the proton
number decreases by two:

— 4
niel™ — pa™ 44 jHe.

. . , a
The mass number of the resulling isotope of atom
differs from the initial number by four units. ‘e the
Examples of such radioactive transformations @
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chains of transformations in the *3U and *}Th families:
238 234 234 234 230
sU — 2Th — +iRa — U — *'Th,

232 228 228 228 224
5")Th — ”Ra — thc — 90Th — R_QRE:I.

9.23. 1In the course of the time interval d¢ the number of
nuclei of the new element (the “daughter” nuclei) changes
thanks to the emergence of new nuclei as a result of the
decay of initial (or “parent”) nuclei and the departure
of new nuclei as a result of their decay:

dN, = N\ dt — N,yA,dt.
Here N, is the number of parent nuclei and N, is the

number of the daughter nuclei at the given moment.
According to the law of radioactive decay,

Ny =N M,
Thus,
AN, = W Nje~Mt dt— AN, dt,
or
A 2N, = AN 9.23.1)

We start by considering the limiting cases.
(1) A; > A,. If we rewrite (9.23.1) in the form

d (NVy/No) N _
_T;?_L“‘_ }\-27:—:7\,16 Mt

and assume that after a small time interval we can set
e Mt = 0, we obtain

Ny _ Nap g g
NO NO

With A; > A, we can assume that N,, = N,, so that
N,=N,e-tt,

Physically this means that parent nuclei practically in-
stantly transform into daughter nuclei, which then decay
according to the law of radioactive decay with a certain
decay constant.

(2) M < A,. In this case the number of parent nuclei
can be assumed to remain constant over a sizable time
interval and is equal to N,. This transforms (9.23.1) into

dn,
Tz“ = =Ny~ MNy),
which after integration yields

N,_—.%Nou—e-xzt;,
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The number of daughter nuclei tends to a constant (satu-
ration) value (see Figure (a) accompanying the answer):

N, = ;—; N,. 9.23.2)

Of course, over a long time interval this number will
decrease in accord with the decrease of the number of
parent nuclei, whereby a more exact form of (9.23.2) is

N,= %:— Nje—Mt,

An example of the case with A, < A, is the radioactive
decay of radium *’Ra with a decay constant equal to
1.354 X 10711 51 (a half-life of 1622 years). Its product

Q)]
Fig. 9.23

is radon *2!Rn with a decay constant equal to 2.097 X
10-¢ s-! (a half-life of 3.825 days). If radium is placed
inside a closed vessel, already after one month the amount
of radon in the vessel will be only 0.4% less than the
equilibrium amount, while the equilibrium amount, as
shown by (9.23.2), constitutes only 6.46 parts to a million
of the initial number of radium atoms.

To find the overall dependence of N, on f, we must
integrate Eq. (9.23.1). The solution has the form*

MN
NZ —_ _ﬁ (e—hll_ e—hzt)_
This expression has a maximum at a value of ¢ equal to
tn, which can be found if we nullify the derivative
dnN,/dt:
t — lnkg—ln M

The N, vs. t curve is depicted in Figure (b) accompanying
the answer.
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* To integrate Eq. (9.23.1), we introduce a new variable,
z = N,c™! This yiclds

%:(%-’— XzNz) e)‘zi, e~ Mot g—:.—_- M Nge ™M
dz =2~ Npe®2 =Mt gg, z=—7“N;: (e~(ha=2Dl_y)
27— M
__MN, gt st
Ny,= py— (e e ).

9.24. As the electron moves in the Wilson chamber, it
gradually loses its energy to ion formation, and it is on
these ions that drops of mist form, which make visible
the track of the electron. This loss of energy results in
a loss of speed, which means that the radius of curvature
of the electron trajectory in the external magnetic field
becomes smaller, since

R = mv/eB.

The wider part of the spiral corresponds to the beginning
of the track, and the narrower part corresponds to the
end of the track. If we take into account the negativity
of the electron charge and the direction of its motion in
the chamber, we can conclude that the magnetic field is
directed toward the reader.

9.25. According to Pauli’s hypothesis, which was veri-
fied in experiments, simultaneously with the escape of an
electron the nucleus emits a neutrino (more precisely,
an antineutrino), which is the particle that carries off
a fraction of the energy released in beta decay and which
has a momentum whose vector sum with the nucleus
momentum and the electron momentum is zero:

2 X > VA4 B0 +;-

9.26. The proton and neutron masses can be considered
practically equal. When the proton and the neutron col-
lide, the scattering angle after collision will be 90°,
whereby after collision the direction of the neutron veloc-
ity will also make an angle of 45° with the initial direc-
tion of the proton velocity. Thus, after collision the
proton and neutron energies are practically the same.
9.27. A change in the direction of motion (following
a collision act) by an angle greater than 90° is possible
if the mass of the incident particle is smaller than that
of the particle that initially was at rest (in the laboratory
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system). The mass of the atom and molecule of hydrogen
is smaller than the mass of an alpha particle, while the
mass of helium is equal to the mass of an alpha particle.
The gas closest to helium in the Periodic Table that has
a mass greater than that of the alpha particle is nitrogen.
9.28. The relative velocity, according to the relativistic
formula for velocity addition, is

poy e itve
rel = 4y v/ct
The velocity of the electron flying away from the accele-
rator with respect to the accelerator is
_ 2v
T 44v?/e?

while the velocity of the electron flying toward the ac-
celerator is

Va

Vy = O.

The relative velocities of the electrons with respect to
each other are:

2v
Vao=Trve
for the electron moving away from the accelerator, and
2v
Voa= = T

for the electron moving toward the accelerator, that is,
they are equal in absolute value.

For the sake of an example we assume that v = 0.9c.
In this case the velocity of the electron flying away from
the accelerator and the relative velocities of the electrons
are related through the following formula:

1.8

TW c= 0.99450.

Va:Vab: '_Vbn:
9.29. The statement carries no physical meaning what-
soever. First, there is not a single physical quantity
that can transform into another physical quantity (time
cannot transform into area, field strength into length,
and so on). Second, for processes in relation to which
this statement is usually made, the common conservation
laws, the energy conservation law and the mass conserva-
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tion law, are valid, that is, if isolated systems are con-
sidered. In the case at hand, these balance equations are
as follows:

E*¥ = F 4 hv

for energy (here E* is the energy of the excited atom, £ is
the energy of the atom in the ground state, and Av is the
photon energy), and

m* =m + pg

for mass (here m* is the mass of the excited atom, m is
the mass of the atom in the ground state, and p, = hv/c?
is the photon “mass”).

The first balance equation expresses the law of energy
conservation and the second, the law of mass conservation
(for the same process).

9.30. The ratio of the mass of a moving particle to the
rest mass of that particle is

m 1

m Y1

The kinetic energy acquired by a particle in an accelerator
is determined by the following difference:

1
Wkln = mcz——mocz == mocz (T/i——-ﬁ —_ 1) )
whence
m _ Wiin +1

my myc?

For a fixed value of Wyy,, the ratio m/m, is the smaller
the greater m, is and, hence, curve 2 corresponds to the
particle with the greater rest mass.

9.31. If the kinetic energy of the particle is Wy,y, its
velocity can be found from the equation

r 1
Wian =t (<= = 1)
with the result that

oo, moct 2
=1 ()
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If Wyin < myc?, we arrive al an expression for the velocity
that is identical to the one following from classical me-
chanics and electrodynamics:

v="Y 2eU,N/m,.

The voltage across the cylinders changes its sign in the
course of a half-period 7/2 = 1/2v, whereby the length
of the cylinders must increase according to the law

»_L 2eU, 1/2
v=13 l/“'nTN :

However, as Wy, grows, the velocity grows slower and
slower. For instance, for v = 0.87¢, v = 0.89¢, and
v = 0.90c we have, respectively, Wy, = my?, 2m,c?,
and 3myc?. For sufficiently high energies the velocity of
the particle approaches that of light and the length of
the cylinders does not change any more: I = ¢/v.

9.32. The operation of a cyclotron is based on the fact
that the time a charged particle takes to perform a full
circle in a magnetic field does not depend on the particle’s
velocity. The time it takes the particle to complete
one-half of a full circle, that is, the time in the course of
which the electric field between the Dees reverses its
direction, is smuv/Be. As the particle is accelerated, its
mass grows according to the formula

my
m= —e—
l/1— v2/c?

The particle moving inside a Dee will gradually begin
to get out of step with oscillatory electric field between
the Dees.

The electron mass is doubled already at an energyequal
to 0.51 MeV, whereby the discrepancy between the time
it takes the electron to make a half-circle and the period
of reversal of direction of the field between the Dees
becomes noticeable already at accelerating voltages of
the tens of kiloelectronvolts. This, naturally, limits the
possibility of accelerating to high energies electrons in
cyclotrons.

For ions, whose rest mass is greater than the electron
rest mass by a factor of 103, 10* or even 10°%, the effect
of increase of mass with velocity manifests itself at much
higher energies. But here, too, there is a limit of acce-
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leration of such particles in a ¢yclotron. To overcome this
difficulty, other types of accelerators have been designed,
in which the frequency of the electric field or the magnetic
field is varied in the proper manner (separately or
together).
9.33. The energy of the quantum that flies upward de-
creases while that of the quantum flying downward in-
creases, as a result of which the frequency of the first
gets lower and that of the second, increases. The difference
proves Lo be so small, that could be delected only after
a discovery made by Mdssbauer, whose name was later
given to this effect. An experiment in “weighing” the
photon was conducted later by Pound. The results of
these experiments are in full agreement with the theory
of relativity. The present problem constitutes a simplified
and schematized version of the idea of Pound’s experi-
ment.
9.34. Cerenkov radiation appears when the speed of
light in the given medium is lower than the electron
velocity. From the figure accom-
panying the answer we can see

C how the light wave is formed. In
\ the time that it takes the electron
to cover a path AB the light covers
—— a distance AC, with
A B
. lac) ¢
Flg. 9.34 IABI ——T )

where ¢’ = ¢/n is the speed of light in the given medium.
The envelope of the waves emitted by difierent points
constitutes the wave front BC. The figure accompanying
the answer shows that

|AC|
|4B|

=cos 0.

The refractive index is

veos *



Postface

Solution ol the concluding problems in this Collection falls on the
period when you are completing the general physics course in your
college. It would be a mistake, however, to think that your studics
in physics have cowme to an end. Physics will “pursue” you all your
life unless, of course, you change your profession as engineer to
that of opera singer or sports commentator.

Today numerous ficlds of human activity require a knowledge ol
physics, from astronautics to microbiology and from radio engi-
necring to archeology.

But what portion ol the physics studied in college will you find
most needed in your future work? The laws? Naturally, one must
know the main laws of physics, but I would not call this the most
important aspect of your knowledge. The expression of a law or
its mathematical formulation can be found in a reference book.
This is even trucr of the many specific formulas, such as the Poi-
seuille formula for viscous flow or the formnula for the capacitance
of a cylindrical capacitor.

Of course, the morc formulas and laws that you remember the
less frequently will you have to look into reference books and the
more productive your work. And yet among the qualities that an
engineer must have I would put first the ability to grasp the method
required for a project. The aim of this book is to inculcate in the
reader a taste for the physical method of thinking.

Solution of the majority of physical problems can be divided
into four stages.

The first deals with the physical model of the phenomenon in
question. A qualitative picture of the phenomenon is formulated,
allowing for the factors that could be important. The second in-
volves a mathematical model. An equation is set up that in accor-
dance with an assumed law connccts the factors introduced in the
first stage. In the third stage mathematics steps in, so to say. By
solving algebraic, trigonometric, or differential cquations one
can obtain the sought quantity in the form of an explicit function.
The difficulties that arise in the third stage are more easily sur-
mounted if the student has mastered the respective sections of
mathematics. Mathematics for the engineer is what a cutting tool
is for the lathe operator or a soldering iron for the assembler of
electronic circuits.

Once the problem is solved, the very important fourth stage comes
into the picture, namely, interpretation of the result.obtamed.
The fourth stage is an analysis of the effect of the various para-
meters on the quantity of interest to the investigator. .

To illustrate what has been said, let us examine damped oscilla-
tions, a common phenomenon known to everyone but not simple,
nonetheless.

For instance, after performing several free oscillations, a pendulum
finally stops; so does a load on a spring. The forces acting on the
load are the elastic force exerted by the spring and the drag exerted
by the surrounding medium (air). We assume that the elongatloyn
of the spring is small and, hence, the elastic force obeys Hooke's
law. We also assume that the drag is proportional to the rate
of motion of the load. All this constitutes the physical model of
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the phenomenon. fts mathematical model can be built by writing
Newton’s second law of motion: the mass of the load multiplied
by the acceleration equals the sum of the projections of the forces
acting on the load. This is a second-order differential equation,
which can be solved (or integrated) if we consider the existence
of two constants that depend on the initial data (the third stage).
The resulting rather cumbersome formula expresses the time
dependence of the load’s displacement. The parameters in the
formula are the mass of the load, the elasticity of the spring,
and the resistance coefficient of the medium.

The analysis of the solution (the fourth stage) shows that a certain
ratio of the parameters may produce periodic damped oscillations
while another ratio may lead to aperiodic motion.

Such an analysis is given in a number of problems in this Collection.
Take a careful look at their solution and pinpoint the four stages
mentioned earlier. Give special consideration to the drawings
accompanying the problems. Unfortunately, many students per-
ceive a diagram as a simple illustration to be memorized and later
drawn when necessary. As a result one sometimes gets a drawing
that resembles a cartoon more than a physical diagram.

Often a student constructs the necessary curve more or less cor-
rectly but does not know the quantities that must be laid off on
the axes. It is also difficult to overestimate the importance of
knowing how to interpret a diagram. This requires, among other
things, the skill of knowing how to “read” a diagram in the mathe-
matical sense of the word, that is, understand that the derivative
is positive where the curve goes up and negative where it goes
down, and is zero at points of maxima and minima. In scgments
where the curve is convex downward the second derivative is
positive; where it is convex upward the second derivative is nega-
tive. At inflection points the second derivative vanishes.

One must not forget that physics is an experimental science.
In some cases an experiment helps one to find a sought law, disco-
ver a new phenomenon, or clarify certain aspects of a known effect;
in others it serves as strict judge of the validity of a theory. There-
fore, one must always prepare an experiment with care, understand
the lworkings of the various devices involved, and analyze the
results.

I believe that if you have solved or studied the solution of a large
number of problems, the basics of the physical method of thinking
have become clearer.

In conclusion I would like to hope that after you have finished
college, far from being forgotten, physics will prove to be the
real basis of your further development as an all-round person in
this age of scientific and technical progress.






Some Fundamental Constants*

Quantity Symbol Numerical Value
Gravitational constant G 6.672 X 10~ N.m?2.kg-?
Speed of light in vacuum ¢ 299792 458 m-s~1 (exact*¥)
Permeability of vacuum By  4nxX10-7 H.-m~! (exact***)

=1.256 637 6144 H.m"!
Permittivity of vacuum gp  8.854 1878 x 10-12 F.m!
Planck constant h 6.62618 X 163¢ J.s
Planck-Dirac constant B 1.05459 X 1034 J.s
Atomic mass unit amu 1.66057 x 10-27 kg
Energy equivalent of 931.502 MeV
[ amu
Electron rest mass me  9.10953 X 10-31 kg

= 5.48580 X 10~ amu
Energy equivalent of m, 0.511 003 MeV
Proton rest mass mp  1.67265 X 10-27 kg

= 1.007 2765 amu
Energy equivalent of m, 938.28 MeV
Neutron rest mass mn,  1.674954 % 10-27 kg

Energy equivalent of m,
Elementary charge (elect- e
‘ron charge)

Avogadro constant Na
Faraday constant F
Mo]ar gas constant R
Molar volume of ideal V,
gas at S.T.P. ,

Boltzmann constant k

Stefan-Boltzmann  cons- o

tant

Wien constant h

Rydberg constant R

Compton wavelength of A
the electron
Bohr radius aq

=1.008 665 amu

939.57 MeV

1.60219 x 10-12 C
=4.80324 x 10-1° esu
6.02204 x 1028 mol-?!
9.64846 X 10-¢ C.mol-!
8.3144 ) -mol-1.K-1
22.4138 x 10-3 m3.mol-!

1.38066 x 10-23 J.K-!
5.6703 x 10-8 W.m-2.K~+4

2.8978 x 10-3 m-K
1.097 3731 X 197 m~!
2.426 309 x 10-12 m

7=)/271).386 159 X 10-12 m

0.529 177 < 10-10

* The numerical values of the constants are given with an_ accuracy
such that corrections may occur only by several units in the last digit.

#* According to definition.

#%% According to the resolution of the Seventeenth General Conference
on Weights and Measures, the value of this constant is defined as not sub-

ject to further refinement.
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