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Preface

To solve the problems that modern science and technolo­
gy pose, specialists must not only possess a certain vol­
ume of knowledge but must be able to freely apply this
knowledge. The aim of the present collection of questions
and problems is to develop practical skills during study
of one of the fundamental sciences, physic-so The Collec­
tion is intended for the self-instruction of students of
technical colleges. The best way to use it is to solve the
problems while preparing for term exams.

The Collection contains more than 400 questions and
problems covering all the sections of the physics course.
All questions and problems have detailed answers and
solutions. For this reason the two main sections of the
book, Questions and Problems and Answers and Solu­
tions, have identical headings and numbering: each chapter
in the first section has a corresponding chapter in the sec­
ond, and the numbering of answers corresponds to the
numbering of problems.

A special feature of the Collection is the drawings and
diagrams for most of the questions and answers. The
diagrams use a variety of scales: linear, semilog, log-log,
and quadratic.

Arrangement of the material in this Collection corres­
ponds to the structure most commonly used in college
physics textbooks. One exception is the questions and
problems involving the special theory of relativity. These
are placed in different chapters, starting from the one
dealing with mechanics.

While preparing the manuscript, I received many sugges­
tions and comments from institutions of higher learn­
ing in Leningrad, Moscow, and Tomsk. I take this
opportunity to thank all who helped to improve this
book. I am particularly grateful to Professors I. A. Ya­
kovlev, B. M. Smirnov, V. A. Fabrikant, and S. Ya. Shats.
I would also like to thank Prof. A. G. Chertov and the
Department of General Physics at the Moscow Physical
Engineering Institute for most useful comments offered
while reviewing this book.

L. A. Sena
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A drawing is the source and soul
of every image and the root of every
science."

Michelangelo

Introduction

The student put down his record book and picked up an
examination card. Upon reading it, he gasped: "My God!
What will I do?" Judging by his face, one would think
be held at the very least a poisonous snake. The assign­
ment on the card read: "The velocity distribution of mol­
ecules; the Maxwellian curve." The student was not re­
quired to derive the formula or even write out the formu­
la. All he had to do was to draw the curve and explain its
physical meaning. Another student, in drawing the van
der Waals isotherm depicted something resembling a ca­
mel with two humps; moreover, the curve passed through
the origin. Still another student, while explaining the
idea behind the Stern experiment, made the outer cylin­
der rotate while the inner cylinder remained fixed. Fi­
nally, to the question of how the temperature of a gas
changes under adiabatic expansion a student gave the
following "reasonable" answer: since objects expand when
heated, and the gas expanded in the experiment, the
temperature must have risen.

Unfortunately, examples of such answers abound. We
.are not speaking of the excellent student or even of the
average student, of course. Yet it can be said without
exaggeration that for many students "qualitative" ques­
tions and problems present many more difficulties than
the derivation of formulas. The situation is especially
bad with the building of diagrams and sketching of exper­
iments. College instructors and lecturers often complain
of the low level of school instruction, but complaints' are
of no help. Hence, it is essential to develop a student's
creative thinking and ability to analyze physical phe­
nomena.

It was this that prompted me to draw on more than a
half-century of instruction at colleges in Leningrad and
compile the present collection of questions and problems.
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The book was conceived literally as a teaching aid; it is
intended to help the student in the physics course at the
freshman level. The main emphasis is on the use of dia­
grams and sketches. A drawing makes the essence of a
problem clearer and assists the development of "qualita­
tive" thinking. That is why I have chosen Michelangelo's
remarkable words for the epigraph to this work.

The questions and problems found here encompass prac­
tically all sections of the physics course studied in a
technical college. Since some colleges give greater stress
to certain topics, the book includes a number of ques­
tions and problems intended for a well-prepared student.
This feature makes it possible to use the book to some
extent in the physics departments of universities and
the physics and mathematics departements of teachers'
colleges. On the other hand, some problems require only
knowledge within the scope of secondary school, though
these are usually not considered in the school syllabus in
such form.

All questions and problems have detailed answers and
solutions. At times a variety of solutions are given. One
may be based on dimensionality considerations, while
another is achieved through direct integration. The major­
ity of answers and solutions are analyzed and discussed.
Sometimes practical applications are given to show how
and where the specific phenomena and laws are encoun­
tered.

In compiling this collection I did not aim at selecting
the most difficult or the least difficult questions and
problems. The range of difficulty is considerable. The
book is structured in such a way that all students, from
the well-prepared to the not-so-well-prepared , can use it.
If a student is not able to answer a question or solve a
problem without help, a careful study of the solution
will help him to master the theory involved and solve on
his own at first the simpler problems and then the more
complicated. A well-prepared student will be able to
solve most of the problems, hut even he will find it
helpful to compare his solution with the one given ill the
hook and to read the accompanying discussion of the re­
sults.

To answer the questions it is sufficient at times to read
the question, glance at the diagram, and write the approp­
riate formula. On the other hand, some problems require
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constructing a diagram or even reconstructing the diagram
accompanying the problem. Others necessitate making
simple mathematical transformations, still others solving
the problem in general form, using the necessary con­
cepts of mathematics.

In this connection the question of the role and necessa­
ry level of mathematical knowledge arises. I have as­
sumed that what the student learns in the accompanying
mathematical course may and must be employed when
necessary. I object to what is jokingly called the "Io rrnu­
lization" of physics, but I also object to ignoring the
possibilities offered by mathematics. A knowledge of
mathematics is essential for a study of special disciplines.
And, vice versa, a study of these disciplines is extremely
useful for a deeper understanding of mathematical con­
cepts and methods. Bearing all this in rnind , I have set
as the "upper limit" the use of the most simple ordinary'
differential equations of an order no higher than the·
second.

Notwithstanding the great convenience of the symbol­
ic method in the theory of oscillations and the theory of
alternating currents, the respective problems have been
solved by the common trigonometric method with occa­
sional employment of the vector concept. This is done
for the simple reason that the symbolic method is not
studied in the course of general physics in most technical
colleges, and justifiably, I believe, because for first-year"
students the method is too formal and lacks pictorial
clarity.



Questions and Problems

1. Fundamentals of Mechanics

t .1. A wind is blowing with a constant velocity v in the
direction denoted by the arrow in the figure. Two air­
planes start out from a point A and fly with a constant
speed c. One flies against the wind to a point B and then
returns to point A, while the other flies in the direction
perpendicular to the wind to a point C and then returns
to point A. The distances AB and AC are the same.
I
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Fig. 1.1
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Fig. 1.2

Which plane will return to point A first and what will be
the ratio of the flight times of the two planes?
1.2. A boat is moving across a river whose waters flow
with a velocity u, The velocity of the boat with respect
to the current, vo, is directed at an angle a to the line
perpendicular to the current. What wi ll be the angle e at
which the boat moves with respect to this line? What
will be the veloci ty v of the boat wi th respect to the ri ver
'banks? What should be the angle at which the boat moves
directly across the current with given u and v?
1.3. From a point A on a bank of a channel with still
waters a person must get to a point B on the opposite
'bank. All the distances are shown in the figure. The per­
son uses a boat to travel across the channel and then
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'walks along the hank to point B. The velocity of the
boat is VI and the velocity of the walking person is v2•

Prove that the fastest \vay for the person to get from A

Fig. 1.3

s

h

to B is to select the angles at and a 2 in such a manner
that (sin Ct1/(sin ( 2 ) = V1/V2 •

1.4. An object slides without friction down an inclined
plane from a point B to a point C that is distant a from

B

Fig. 1.4 Fig. 1.5

a point A. At what height h (or at what angle a) is the
sliding time minimal?
t .5. The time dependence of the lengths of the paths of
two bodies moving in a straight line is given by curves a
and b, respectively. What curve corresponds to accelerat­
ed motion and what curve to decelerated motion?
t.6. A material particle is moving along a straight line
in such a manner that its velocity varies as shown in the
figure. At which moment in time numbered successively on
the time axis will the acceleration of the particle be max­
imal? How should one use the graph to determine the
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average velocity of motion over the time interval from
t 1 to t 2?
1.7. The velocity of a particle moving in a straight line­
varies with time in such a manner that the v vs. t curve-

v

I I

~
1 2 3 t, tz. 4 t

Fig. 1.6

v~

o t

Fig. 1.7

is represented by one half of an ellipse. The maximal ve­
locity is urn and the total time of motion is t. What is
the path traversed by the particle and the average veloci­
ty over t? Can such motion actually occur?
1.8. The velocity of a particle decreases in relation to
the path traversed according to the linear law v = Vo ­
ax. After what time will the particle get to a point B

v
A

o Xm

Fig. 1.8

v
.,

o

Fig. 1.9

x

that lies on the axis of abscissas distant X m from the ori­
gin of coordinates?
t.9. The velocity of a particle moving in a straight line­
increases according to the linear law v = V o + kx, How'
does the acceleration change in the course of such mo­
tion? Does it increase or decrease or stay constant?
1.10. The figure shows the "timetable" of a train, the de­
pendence of the speed of the train on the distance trav­
eled. How can this graph be used to determine the average­
speed over the time interval it took the train to travel
the entire distance?
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i.11. A rod of length lleans by its upper end against a
smooth vertical wall, while its other end leans against
the floor. The end that leans against the wall moves uni-

y /

Fig. 1.10

o
Fig. 1.tt

v V

pe ..
':zt~w

W (0) {b)

r .. C7 ~w v
e

W Cc) Cd)

Fig. 1.13

formly downward. Will the other end move uniformly,
too?
1.12. An object is thrown upward with an initial veloc-
ity Vo- The drag on the object is assumed to be propor­
tional to the velocity. What time will it take the object
to move upward and what maximal altitude will it
reach?
t .13. At a certain moment in time the angle between
the velocity vector v of a material particle and the acce-

Fig. t.14

leration vector w of that particle is 6. What will be the
motion of the particle at this moment for different B's:
rectilinear or curvilinear, accelerated or uniform or de­
celerated?
1.14. A particle is moving along an expanding spiral in
such a manner that the particle's normal acceleration
remains constant. How will the linear and angular veloc­
ities change in the process?

13



1.15. A particle is moving in a circular orbit with a
constant tangential acceleration. After a certain time t'
has elapsed after the beginning of motion, the angle be­
tween the total acceleration wand the direction along
the radius R becomes equal to 45°. What is the angular
acceleration of the particle?
1.16. An object is thrown at an angle (J., to the horizon­
tal (0° < ex < 90°) with a velocity yo. How do the nor-

Fig. l.t5

«;

Fig. f.16

mal acceleration W n and the tangential acceleration Wt
vary in the process of ascent if the drag is ignored?
1.17. At the foot of a hill a certain velocity is imparted
to a sled, as a result of which the sled moves up the hill

FIg. 1.t7 FIg. 1.18

to a point A and then down the hill. What are the direc­
tions of the normal and tangential components of the
acceleration at point A?
1.18. An object moves without friction along a concave
surface. What are the directions of the normal and tan­
gential components of the acceleration at the lowest pos­
sible point?
1.19. A stunt rider on a unicycle is riding around the­
arena of a circus in a circle of radius R. The radius of the
wheel of the unicycle is r and the angular velocity with
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which the wheel rotates is co. What is the angular accele­
ration of the wheel? (Ignore the fact that the wheel axis is
inclined.)
1.20. A liquid has been poured into a cylindrical vessel
of mass M (the mass of the vessel bottom can be ighored)
and height H. The linear density of the liquid, that is, the
ratio of the mass of the liquid column to its height, is a.

Fig. 1.19 Fig. 1.20 Fig. f.21

What is the height x of the column of liquid at which the
common center of gravity of the liquid plus the vessel is
in the lowest position?
1.21. A cone-shaped funnel is being rotated with con­
stant angular velocity roe An object is placed on the inner

~w

I

--------=-.=-_--- - - - - -t--- ~

Fig. t.22

I
- I
_\-\ IT ---­
- -\ Ir - -
- \1,1 - -

_ 1 L

Fig. 1.24

wall of ~he funnel. The object can freely move along the
generatrlx of the cone, but during the motion of the
funnel the body is in a state of equilibrium. Is this equi­
librium stable or unstable?
f _.22. A vessel filled with water is moving horizontally
with constant acceleration ui. What shape will the surface
of the liquid have?
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t .23. A liquid has been poured into a cylindrical vessel.
What shape will the surface of the liquid have if the
vessel is rotated uniformly about its axis with an angular
velocity oo?
1.24. A piece of cork has been attached to the bottom
of a cylindical vessel that has been filled with water and
is rotating about the vertical axis with a constant angu­
lar velocity 00. At some moment the cork gets free and
comes to the surface. What is the trajectory along which
the cork moves to the surface: does it approach the wall
or the axis or does it move vertically upward?
1.25. A force acting on a material particle of mass m
first grows to a maximum value Fm and then decreases to

F

Fm

o~------_....-..-_-...,-"""'-

I,....
Fig. 1.25

zero. The force varies with time according to a linear
Iaw, and the total time of motion is t m - What will be the
velocity of the particle by the end of this time interval if
the initial veloci t v is zero?
1.26. Along which of the two trajectories, the horizon­
tal line ac'b or the broken line consisting of two straight

Fig. t.26

h

Fig. 1.27

segments (ac and cb), will the work performed by a force
in displacing an object be greater if the friction is the
same for all three straight segments?
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t .27 • An object of mass m is sliding down. a hill. of ar­
bitrary shape and, after traveling a certain horizontal
path, stops because o.f, friction. The friction co~fficient
may be different for different segmel~ts of the ~ntlr~ path
but it is independent of the velocity and direction of
motion. Find the work that a force must perform to re­
turn the object to its init.ial position along the same
path.
1.28. The dependence of the potential energy of an
object on its position is given by the equation W = ax2

w
- -- -- .__. --. A

o
Fig. t.28

x
Fif.(. 1.21)

x

(a parabola). What is the law by which the force acting
on the object varies?
1.29. An object whose density is Pob falls from a certain
height into a liquid whose density is Pliq. In the figure
the potential energy W of the object is plotted along the
vertical axis and the position of the object (its altitude)
is plotted along the horizontal axis. The potential energy
of the object at the level of the liquid is taken zero and
the positive direction of the vertical axis (the W axis) is
the one pointing upward from the liquid's surface. De­
termine which of the five straight lines, 1-5, corresponds
to an object with the highest density and which to an
object with the lowest density. Is there a straight line
among these five for which Pob = (112) PUq? The arrows
on the straight lines point in the direction of motion of
the object.

2-0t~89 17



1.30. The dependence of tho potential energy W of the
interaction between t\VO objects on the distance r sepa­
rating thorn is shown ill t.he figure. What will be the
distances between the objects that correspond 1.0 equilib­
rium positions? At what dislancc wil l the equilibrium
be stable? (Answer the same question for unstable equi­
librium.) What segments of the curve correspond to a re­
pulsive force and what segments, to an attractive force?
1.31. A load of mass m2 is hanging from a string. A bul­
let flying horizontally hits the load. Three cases are pos­
sible here, namely, (1) the bullet pierces the load and,

m

r
o.........-a---.--#---"------

w

Fig. 1.30 Fig. r.si

retaining a fraction of its velocit.y, rontinues its flight.,
(2) the bullet gets stuck in the load, and (3) the bullet.
recoils from the load. In which of these three cases will
the load he deflected by an angle a with the greatest
magnitude and in which wi ll it be deflected by an angle
with the smallest magnitude?
1.32. Two spheres of equal mass collide, with the colli­
sion being absolutely elastic but not central. Prove that
in this case the angle between the velocities after collision
must be 90°.
1.33. A sphere of mass In! impinges with a velocity V o
on a sphere of mass m2 that is at rest, with m 1 > nu: The
collision is absolutely elastic but not central. By what
maximal angle 8 will the impinging sphere be deflected?
1.34. Two spheres of equal mass are moving at right
angles with velocities that are equal in magnitude. At
the moment of collision the velocity vector of sphere 1 is
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directed along the straight line connecting the centers of
the spheres. The collision is absolutely elastic. Plot the
veloci tY vectors before and after collisiOIl in di fferent
coordinate systems: (t) ill the laboratory system (in this
systeln the velocities of the spheres are those specified
above), (2) in the coordinate system connected with the
center of mass of the two spheres, and (3) and (4) in the
coordinate systems linked to each of the spheres.
1.35. The centers of the spheres 1, 2, and 3 lie on a
single straight line. Sphere 1 is moving with an (initial)
velocity VI directed along this line and hits sphere 2.

o
Fig. 1.34 Fig. 1.35 Fig. 1.37

Sphere 2, acquiring after collision a velocity V 2 , hils
sphere 3. Both collisions are absolutely elastic. What must
be the mass of sphere 2 for the sphere 3 to acquire max­
imum velocity (the masses m , and m3 of spheres 1 and
3 are known)?
t .36. A sphere of mass m1 moving with a velocity Do

hits a sphere of mass m2 that is at rest. The collision is
absolutely elastic "and central. The velocities of the
spheres after collision are Ul and U 2, respectively. What
are the mass ratios for the following values of velocities:
Ul = 0, u t < 0, and U1 > O?
t .37. A device often used to illustrate the laws of uni­
formly accelerated motion is the Atwood machine. The
machine consists of two loads of mass m1 and m2 at­
tached to the ends of a lilnp but inextensible string. The
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string runs over a pulley. The acceleration with which the
loads movo is

w-- ml- m2 g
- ml+ m2 '

whereas the angular acceleration of the pulley is ignored.
Is the Iast assumption true for ex act calculations?
1.38. Strings arc wound around a shaft and a sheave of
equal mass, and a load is attached to the end of each
string (the loads have equal mass). Which of the two loads

Fig. 1.40

1

Sheave
Shaft

Fig. t.38 Fig. t.41

will descend with a greater acceleration and which of the
rotating objects, the shaft or the sheave, has a greater an­
gular acceleration?
1.39. A vacuum cleaner standing on the floor turns
through a small angle when switched on and then stops.
Why does this happen?
1.40. A number of types of helicopters, among which
are the Soviet-made "Mi" helicopters and the Westland
Whirlwinds designed for use by Queen Elizabeth II,
utilize one main rotor and a small vertical tail rotor.
What is the function of this second rotor?
1.41. A rod whose lower end is sliding along the hori­
zontal plane starts to topple from the vertical position.
What will be the velocity of the upper end when this
end hits the ground?
1.42. A thin rod of length 2R and mass m is standing
(vertically) on a perfectly smooth floor. The state of equi­
librium in which the rod is at rest is unstable, and the rod
falls. Find the trajectories that the various points of the

20



rod describe and the velocity with which the upper end
of the rod hits the floor.
1.43. A homogeneous rod AB is lying on a perfectly
smooth floor. A bullet hits the rod and gets stuck in it.
The direction of the bullet's initial velocity V o is rerpen­
dicular to the rod, and the point where the bullet hits
the rod lies at a distance x from the middle of the rod.
The mass of the bullet is m and the mass of the rod is M.

D

Fig. 1.43 Fig. 1.~4

Will a velocity directed in opposition to Yo be iJl1pul'tcd
to end A at the first mornent after the collision?
t .44. The axis AB of a gyroscope is mounted ill ~\ Iraruo
that can rotate about the axis CD. This frame is mount­
ed, via vertical supports ee' and DD', on a horizo~­
tal platform which, in turn, can rotate about tlle axis
EF. At first the platform is at rest and the gyroscope is
rotating in the direction designated by arrow 1. Then
the platform begins to rotate in the direction designated
by arrow 2. How will the gyroscope's axis change its
position in space?
t .45. A top is spinning in the direction designul.od by the
arrow in the figure. In what direction docs the proces­
sion of the top occur?
1.46. A shaft whose diameter is d and length is l is ro­
~ating without friction in bearings with an angular veloc­
ity 000• A sleeve of height h and ou tel' d lametor D is
fitted on the shaft (the materials of the sleeve nod the
shaft are the same). At first the sleeve is no t co.mected
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with the shaft and is a t rest. Then at some moment the
sleeve is clamped to the shaft. What will be the common
angular velocity of the shaft plus the sleeve?

I
.,,-1- .......

/' I <t
(, I

.......... -1/
I

Fig. 1.45

dt~1~a:~ID
I~ .1

Fig. 1.46

t .47. A disk and a sphere roll off two inclined planes of
the same altitude and length. Which of the two objects
will get to the bottom of the respective plane first? How
does the result depend on the masses and diameters of
the disk and the sphere?
t .48. A spacecraft is circling the earth E along an ellip­
tical orbit. How must the velocity of the spacecraft at

p

.,...----......,
,/ "-

// ~,
\
\
\

\ /" /'--....... ..-/----
Fig. 1.48

A

Fig. 1.50

perigee P and apogee A he changed so that the spacecraft
follow H circular orbi to?
1.49. Several artificial satellites of the same In8SS arc
circling the earth along circular orbits of different radii.
How do the kinetic, potential, and total energies and
angular momenta of the satellites depend on the radii of
the orbits?
1.50. Three orbital space stations arc circling the earth
along different orbits: one along a circular orbit and the

22



other two along elliptical orbits whose major axes are
equal to the diameter of the c~rc.ular orbit: The masses
of the stations are the same. WIll the energies and angu­
lar momenta of the stations coincide or will they be
different?
t .51. A spacecraft is circling the earth along a circular
orbit and retains its orientation with respect to the earth.
Is zero gravi ty inside the spacecraft absolute in this
case?
1.52. A cornet flies into the solar system from remote
outer space. The trajectory of the cornet is a branch of

R
I
I
I

-------t----,
Fig. 1.51

Fig. 1.52

A v-A
Fig. 1.54

a hyperbola. Can the comet become a satellite of the sun
S if the interaction of the comet with the planets of the
solar system is ignored?
t .53. What shape will a round disk have if viewed Irom
a system of coordinates with respect to which the disk is
moving with a certain velocity directed along the di ame­
ter of the disk?
1.M. An isosceles right triangle is moving with respect
to a system of coordinates with a velocity v directed
along the hypotenuse. When viewed from this system, the
triangle appears to be an equilateral triangle. Find the
velocity with which the triangle is moving wi t.h respect
to this system. .
~ .55. The various relationships that ex ist between t.i I1U.'

Intervals, coordinates, and veloci ties in the speci al theory

2:1



of relativity are conveniently illustrated via a system
of coordinates in which on the axes we layoff either
distance and time multiplied by the speed of light or
time and distance divided by the speed of light. Curves
that represent motion in such systems are known as world
lines. Various world lines are shown in the figure in the
x/c vs. t coordinates. What does each line represent? Is
there a line that contradicts the main principles of rela­
tivity theory?
1.56. A world line is directed at an angle e to the x/c
axis (see Problem 1.55). What is the ratio of the kinetic
energy calculated via the formula of relativity theory to
the value calculated via the formula of classical mech­
anics? Take the specific case of e = 60° as an example.
1.57. Two systems are moving with respect to each
other with a certain velocity. The motion of one system

tl / tl \ I
~ltl

o 'Ale 0 X/C

Fig. i.57

o

X/C

(e)

(b)(a)

t~l~_
o x/e 0 X/C a

(C) (d)

Fig. t.55

in terms of the coordinates x/c and t of the other system
is represented by a world line directed Hl all angle e to
the xlc axis. After a time interval To reckoned from tho
origin of coordinates has elapsed, one system sends a sig­
nal to the other. After what time will the second system
receive the signal?
1.58. Three systems, A, Band C, are moving with res­
pect to each other in such a manner that with respect to
system B the velocities of A and C coincide in magnitude
and are directed toward B (Figure (a)). When system A
Comes alongside system B (Figure (b)), the clocks in the
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two systems are synchronized. At this moment system A
begins emitt.ing signals direc~ed at . Band sc.parated by
equal time Intervals To· TIlls continues unl.il A comes
alongside C (Figure (c)), with N signals being set over

B
o

~

A

B
o

8
o

(a)

(b)

B
o

Cd)

Fig. t.58

the entire interval between the encounters. At this IHO­

rnent the clock in C is synchronized with the clock in A
and system C starts to send signals directed at B that are
separated by the same time intervals To. Find the differ­
ence in readings of the clock in Band C when these two
systems come alongside (Figure (d)).

2. Molecular Physics and Thermodynamics

2 .1. Two balloons of the same volume are filled wi t.h
gases at the same pressure, one with hydrogen and the
other with helium. Which of the two has the greater buoy­
ancy (including the weight of the bag) and what is the
ratio of buoyancies?
2.2. Which of the lines in the figure reflects correctly
on the log-log scale the temperature dependence of the
root-mean-square veloci t y of mo leculcs?
2.3. Why is the trace of the silver molecules in the
Stern experiment for measuring the velocities of mole-
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cules sharp in the case of fixed cylinders (Figure (a)) and
blurred in the case of rotating cylinders (Figure (b))?

D

(a)

o

Fig. 2.2

togT ( b)

Fig. 2.3

2.4. Usually, in depicting the results of the Stern exper­
irnent , one registers the positions 1 and 2 of the traces of
silver for, respectively, fixed and rotating cylinders
(Figure (a)). However, a student depicted t.he traces ill a
manner shown in Figure (b). The instructor remarked that
such a position of traces contradicts the experimental re­
sults, and yet the student was able to defend his position.
Under what condition can such an experimental si tuation
occur? What are the chances of encountering it in actual
experiments?
2.5. The functions F (v) == ctN/dv and t (v) == (1/No) dN/dv,
with N the number of molecules having velocity v
and No the total number of molecules in a given volume,
are laid off on the vertical axes in Figures (a) and (b),
respectively. What is the physical meaning of each
hatched segment in these figures?
2.6. All the ordinates of curve 2 are twice the COlTe­
spending ordinates of curve 1. What is the di ffcrence be­
tween the velocity distribution functions represented by
these curves?
2.7. A segment from velocity V 2 to velocity Va on the
graph representing the velocity distribution function is
isolated (see Figure (b) accompanying Problem 2.5). flow
can we on the basis of this graph determine the energy of
all the molecules whose velocities lie within the specified
range and. the average energy of these molecules?
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2.8. The velocity ~istributioll !or molec~les can .be
represented as a function of the ratio of the given velocity

1

(a)
0 VI ~7 "~ V't

1 lU)

··· t (v]···
c!)

v, v~ v3 Vof

(b) . (0)

Fig. 2.4 Fig. 2.5

to the most probable one. It is then expedient to layoff
on the vertical axis the ratio of the value of the function
for the given velocity to the value of the function for the

o v
Fig. 2.6

most probable velocity. Will the distribution curve con­
structed in this manner be valid for di fferent gases, di ffer­
ent number of molecules, and different temperatures or
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will it be necessary to reconstruct the curve anew for
each case?
2.9. The Maxwellian distribution can be represented not
only by a function of molecule velocities but also .by a
function of the energies of the molecules. This latter
function gives the number of molecules whose energies
lie within the interval from w to w + dw, or

dN = No! (w) dw. (2.9.1)
Find the expression for this function and see whether it re­
fers only to one gas or is valid for any gas.
2.10. Let us assume that, contrary to the real (Maxwel­
lian) distribution of molecule velocities, all the molecules
at a certain level, say at sea level, have the same velocity
equal to the root-mean-square velocity at a given temper­
ature. Let us also assume that, in accordance with the
ideal gas model, there are no collisions between the mole­
cules. How would the kinetic energy of molecules vary
with altitude under such conditions? Up to what altitude
would an atmosphere consisting of nitrogen and oxygen
extend?
2.11. Here are two explanations of the buoyancy of a
balloon filled with a light "gas. According to the first, the
buoyancy is simply the Archimedes' force equal to the
weight of the air that would occupy the volume of the
balloon (filled with the gas), while according to the sec­
ond, the buoyancy is the difference between the haro­
metric pressures acting on the upper and lower sections of
the balloon. Do these explanations contradict each other?
2.12. The average displacement of a Brownian particle
in time t is (l). What is the average displacement (l) of
the same particle in time 2t?
2.13. If the mean free path of a molecule in a gas is
(l), what is the mean free path of the molecule along an
arhi trary coordinate axis?
2.14. Because of the chaotic motion ofmolecules in a gas
the free paths of molecules have different values. If on
the vertical axis we layoff the logarithm of the number of
molecules whose free paths exceed a certain value x and
on the horizontal axis the value of x, the graph repre­
senting the dependence of these two quantities is a
straight line with a negative slope, .

log N = log No - ax.
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How can one find the free path of molecules using such a
graph?

logN

logNo

Fig. 2.12 Fig. 2.14

2.15. A vessel is divided by a porous partition into two
parts, 1 and 2, of equal volume. After the air was pumped
out of the vessel, part 1 was filled with hydrogen and
part t with nitrogen. The initial pressures of the gases
are the same. Draw a rough sketch of the graph of how
the pressures of the gases in the vessel change with the
passage of time.
2.16. The temperature of a gas in a vessel changes de­
pending on whether the vessel is open or closed, and so

r
Fig. 2.15

·logT

Fig. 2.t6
Fig. 2.'17

does the diffusion coefficient. The temperature dependence
of the diffusion coefficient D for both cases is shown in the
figure on the log-log scale. Which line corresponds to the
case of an open vessel and which to the case of a closed
vessel? The effective cross sections of the molecules are
assumed to be constant.
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2.17. A vessel is divided by a solid partition into two
parts of equal volume. One part is filled with nitrogen
and the other with carbon monoxide. It may be assumed
that the cross-sect.ional areas of the molecules of the two
gases are the same. The relative molecular masses of
hoth gases are also the same (equal to 28). Finally, the
pressures in both parts are the same. After the partition is
lifted, the gases begin to diffuse into each other. flow
does the amount of each gas that has transferred to the
part occupied by the other gas depend on the initial
pressures of the gases?
2.18. A gas is inclosed in a vessel and has a pressure
at which the mean free path of the molecules exceeds con-

Fig. 2.18 Fig. 2.19

siderahly the size of the vessel. The collisions that the
molecules have with the walls of the vessel may be consid­
ered elastic. The vessel is placed in a vacuum and has a
small orifice through which the gas molecules escape into
the vacuum. Is the average energy of the molecules leav­
ing the vessel the same as that of the molecules remain­
ing in the vessel? Is the velocity distribution for the
molecules in both groups the same? The gas is assumed to
be ideal, so that no Joule-Thomson effect is present.
2. t9. A heat flux passes through a gas from a heated
plate with a temperature T1 to a cold plate with a tem­
perature T 2 • The linear dimensions of the plates are
large compared to the distance between them. Is the
temperature gradient the same along the entire heat
flux? Why when measuring the thermal conductivity
coefficient must we place the plates horizontally, with
the plate with the higher temperature placed above the
one with the lower temperature?
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2.20. Liquid nitrogen (t ~ -196°e) is inside a Dewar
vessel. The air surrounding the vessel has a temperature
t :=:: 20°C. The pressure of the residual gas between the
walls of the vessel is about 10-4 Pa (roughly 10-6 rnm fig).
The mean free pa th of the "molecules" of air at atmospher­
ic pressure is about 10-7 In. What is the temperature of
the air between the walls of the vessel?
2.21. Steady-state heat transfer through a gas occurs
between two parallel wal ls. The ex peri ment is conduct-

-t96° C

Fig. 2.20 Fig. 2.2t

ed in such conditions that the only process by which
the heat is transferred is pure thermal conduction. The
dependence of the thermal conductivity coefficient 'A is
measured as a function of the gas pressure p, with the
experiment conducted twice, for two different distances
between the walls. The results are shown in the figure.
What curve corresponds to the greater distance between
the walls?
2.22. Figures (a), (b) and (c) depict three cyclic processes
in the pV-, VT-, and pT-cooroinates. The ourvi l inear

p v

'~:i
2 crf(~l

4 4
1 Lf

V T T

(a) ( b) ( c)

Fig. 2.22

sections in Figure (a) are isotherms. Depict the same pro­
cesses in the pT- and VT-eoordinates (for process (a)),
the pV- and pT-coordinates (for process (b)), and the
pV- and VT-coordinates (for process (cj).
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2.23. A gas is inside a cylinder closed by a piston. The
piston is held from above by a spring whose elastic prop­
erties obey Hooke's law. Produce a rough sketch, in the
p V-coordinates, of the curve that represents the change
in state of the gas upon heating and determine the work

Fig. 2.23

v
Fig. 2.24

that is done in the process if the volume of the gas varies
from VI to V2 and the pressure varies from PI to P2.
2.24. The figure demonstrates the adiabatic curves for
two gases, helium and carbon dioxide. Which curve cor­
responds to which gas?
2.25. A gas expands from an initial state characterized
by a pressure PI and a volume VI in two ways, isotherrni­
cally and adiabatically, to the same volume V2- In
which of the two processes is the final pressure higher and
in which is the work greater?
2.26. The amount of heat supplied to an ideal gas is laid
off on the horizontal axis and the amount of work per­
formed by the g-as is laid off on the vertical axis. One of
the straight lines in the ligure is an isotherm and the
other two are isobars of two gases. The initial states of
hoth gases (pressure, temperature, volume) are the same,
and the scales on the two axes coincide. Which straight
line corresponds to which process? How many degrees of
freedom does each gas have? (Vibrational degrees of free­
dom are not to be taken into account.) The graphs of what
processes coincide with the coordinate axes?
2.27. The straight lines in the figure depict the varia­
tions in temperature as a function of the amount of heat
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supplied in different processes involving the change of
state of a monatomic and a diatomic gas. Which processes
correspond to these straight lines? The graphs of what
processes coincide with the coordinate axes? The initial

llT

o Q

Fig. 2.26 Fig. 2.27

T
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states (temperature, volume, pressure) of the two gases
are the same.
2.28. One of the straight lines in the figure depicts the
dependence of the work done on" the temperature varia­
tions for an isobaric process. The other two are the adiabat­
ic curves for argon and nitrogen. Which straight line

A

Fig. 2.28 Fig. 2.29

corresponds to which process? How should one depict an
lsotherm and an isochor in these coordinates? Bear in
mind that on the horizontal axis we layoff the difference
between the higher and the lower temperature.
2.29. For temperatures close to room temperature and
somewhat higher, the molar heat capacity of hydrogen
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agrees, with gO()O accuracy, with the results predicted by
the classical theory of heat capacit.y for ideal gases, a
theory that allows for three translational and two rota­
tional degrees of Ireetlom for diatomic gases. However, at
low temperatures the heat capacity of hydrogen drops
and at about 40 K becomes the same a~ that of a monatom­
ic gas. What is the explanation for this? Why such
behavior is not observed in other diatomic gases?
2.30. When diatomic gases are heated, their heat capac­
ity exhibits a peak in the high-temperature region. SilTI­
i lar behavior is observed in multi atornic gases. What.
is the explanation for this?
2.31. Draw a rough sketch for the eompressibility of an
ideal gas as a function of pressure for two cases, one when
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the gas is compressed isothermically and the other when
the gas is compressed adiabatically.
2.32. A gas is transferred from a state 1 to a state 2 by
two processes: (a) frrst by an isochor and then by an iso­
bar, and (h) first by an isobar and then by an isochor.
Will the work done in both cases be the same, will the
amount of heat required in the processes be the same,
and will the increment of entropy in the processes be the
same?
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2.33. Draw the Carnot cycle for a monatomic gas on
the log-log scale using the p.T- and VT-coordinates.
2.34. A gas is transferred Irom an initial state 0 to
other states I, 2, 3, and 4 via di lierent isoprocesses.
Which curve representing the dependence of entropy on
temperature corresponds to which process?
2.35. Draw the Carnot eyele in the ST-('.oordinates.
2.36. Two objects with initial LeTllperatul'esT1 aud T 2
[with T1 > T 2) are brought int.o coul.act.. The objects are
isolated frorn their surroundings, and the masses and heat
capacities of the two objects coincirle. How does the total
entropy of these objects change as the temperatures be­
come equal?
2.37. Suppose that the entropy grows Iinearly with
temperature in a process. How does the heat capacity
vary with temperature?
2.38. A gas is transferred from a state 1 to a state 2 ill
two ways: (a) directly hy an isobar, and (2) llr~t. by the

3 .....-I!!--~4

Fig. 2.38

v

Fig. 2.40

isochor 1-3, then by the isobar 3-4, and, finally, by the
isochor 4-2. Show, by direct calculation, that the entropy
increment in both cases is the same.
2.39. A heat engine operates according to a cycle that
consists of two isochors and two isobars. Prove that the
entropy of the heater-gas-cooler system increases as the
engine operates. How does the entropy of the gas change
in the process? The heat capacities of the heater and cool­
er are assumed to he i nfini te.
2.40. According to' the van der Waals equation, which
is a third-degree equation in the volume, the theoretical
isotherm of a real gas may have either one or three in­
tersections with a horizontal Iiue, the intersections cor-
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responding to either one or three real roots of the equa­
tion. With three roots it may so happen that two are equal
(maxima and minima on the isotherm) or even all three
are equal (the critical point). However, un an isotherm
built for a sufficiently low temperature there is a section
lyiug below the horizontal axis, and a horizontal line
in this ease intersects the section only at t.wo points (two
roots in V). Where in this case is the compulsory third
root?
2.41. The section 1-3 on the theoretical isotherm of a
real gas (the van der Waals isotherm) is assumed to be
unrealistic because of i ts absolute instabili t y. What is the
reason for this instability?
2.42. Changes in the state of a real gas or liquid that
are realized under ordinary conditions at a constant

p

3

v v
Fig. 2.41 Fig. 2.42

temperature are represented by the so-called Andrews
i sot.herm , which consists of a section (1-2) representing
the unsaturated vapor, a section (2-4-6) representing the
two-phase state (saturated vapor and liquid), and a sec­
tion (6-7) representing the liquid. This isotherm differs
Irom the theoretical van der Waals isotherm (1-2-3-4-5-6­
7), which corresponds to a one-phase transition of the
entire mass of vapor into liquid. On the van der Waals
isotherm there are sections corresponding to metastable
states (2-3 and 5-6), which can be realized in certain
conditions. What aro these stales and what are the con­
ditions for their realization?
2.43. Using the second law of thermodynamics, prove
that the areas of the hatched sections between the theoret­
ica1 and experimental isotherms of a real gas must be
equal.
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2.44. When a l iquirl evaporates, the hent supplied to it
is used partially to do work in overcoming the forces of
cohesion between the molecules (the internal heat of va­
porization) and partially to do work against the forces
caused by external pressure (the external heat of vapor­
ization). How to determine the external heat of vapor­
ization from the graph represent! llg the experimental
isotherm of a real gas?
2.45. Gas cylinders and pipes Intended for operation
under high pressures a1'0 us uul l y Lostod no thy Purn ping

g~ 0I

Fig. 2.43
v

(II) (c)

Fig. 2.46

Fig. 2.49

(d)

air or a gas into t.horn but hy filling thorn with a Iiquid ,
water or oil, and raising tho pressure up to the test value.
This is done in accordance with safety regulations. What
is the explanation for this?
2.46. To demonstrate the transition to the cri tical stale,
a liquid (usually ethyl ether) is placed inside a small
sealed thick-wal led glass tube. 'Tho tube is then sealed off
(Figure (a)) and Hlowly heated. It is found that in the
process of heating t.he houudury betwoeu the liquid and
the vapor above the liquid rises and the meniscus 1>8 0

•

comes flatter (Figure (b)). It,isextrenll~lytlifli~ulttoohsel'vo

the transition through the critical temperature because of
intense convective fluxes, but tho result is seen because at
this temperature the 1I1011isCliS disappears completely
(Figure (c)). UPOll slowly cooling the tuhe it is found that
at the same temperature the entire volume becomes cloudy,
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so that. light cannot pass through the tube (Figure
(d)). If the temperature is lowered still further, the
volume becomes transparent and there appears a menis­
cus, which separates the two phases. Explain the reasons
for the observed phenomena.
2.47. flow does the temperature of a liquid change un­
der adiabatic evaporation?
2.48. The bending of the surface of a liquid creates excess
pressure (known as the Laplace pressure). Because of this
the pressure inside a soap bubble is somewhat higher than
the atmospheric pressure. In a drop, too, there is excess
pressure. Suppose we have a drop of liquid and a soap
bubble of the same liquid and the same diameter. Where
is the pressure greater: inside the drop or inside the bub­
ble?
2.49. Two soap bubbles of different diameters arc
blown out using a T-shnped pipe (see the figure). Will
the diameters of the bubbles remai 11 unchanged "?

2.50. Three drops of different diameters are in the at.mo­
sphere of the vapor of the liquid from which the drops are

(u) ( b)

Fig. 2.50

(e)

r M>~~~~
(0)
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Fig. 2.51

formed. The pressure of the vapor is such that the drop
with the medium diameter (Figure (b)) is in equilibrium
with the vapor. Is this equilibrium stable? How will the
drops of the smaller (Figure (c)) and the larger (Fig­
ure (a)) diameters behave?
2.51. Two drops are placed between two parallel glass
plates, a drop of water (Figure (a)) and a drop of mercury
(Figure (b)). What forces act on the plates in each case'?
2.52. Inside two conical pipes there is a drop of water
(Figure (a)) and a drop of mercury (Figure (b)). Where
does each drop lend to move?
2.53. Which of the curves shown ill the figure depicts
correctly the temperature dependence of surface tension?
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Curve 1 falls off to zero at the boiling- point of the liquid,
curve 2 falls off to zero at the critical temperature, curve 3
tends to zero asymptotically, and curve 4 shows that sur­
face tension is temperature independent.
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Fig. 2.52
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2.54. A capillary tube is placed vertically in water. The
diameter of the tube is such that surface tension "lifts"
the liquid to an altitude hoe But the height of the tube
above the liquid, h., is less than hoe
How in this case will the column of
liquid in the tube behave?
2.55. A viscous liquid is flowing due
to a pressure head I1p along a pipe of
length 1 and diameter D. Will the
volume flow remain the same if instead
of this pipe we use four parallel pipes
of the same length but with the
diameter of each pipe being equal
to D/2?
2.56. A viscous liquid is flowing along a horizontal pipe
of diameter D == 2R. At some point in time a particle of
rust or boiler seale gets detached from. the upper part of
the pipe and falls downward. Assuming that this particle
acquires a constant fall velocity vy practically at once
(at this velocity the force of gravity, Archimedes' force,
and the drag of the liquid balance each other), find the
trajectory of the particle and the distance the particle
travels in the horizontal direction due to the flow of the
liquid. The maximal velocity of the liquid (along the
pipe's axis) is V:\"m.

2.57. When ice with a temperature below 0 °C is mixed
with water with a temperature above O°C, there are four
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possibilities: the ice rnel ts and the final temperature is
above 0 °C, the water freezes and the final temperature is
below 0 °C, part of the ice melts and the temperature of
the mixture becomes 0 DC, and part of the water freezes

t~C

80

flO \

Q
(11)

o

Q
(b) Q (c)

Fig. 2.57

Q
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and the temperature of the mixture becomes 0 °C. On
the horizontal axis we layoff the amount of heat that the
water gives off in cooling and freezing (the upper straight

p
P3

p,

1

r- T

Fig. 2.58 Fig. 2.59

lines) and the amount of heat that the ice absorbs in
heating and melting (the lower straight lines). The scale
along the horizontal axis is arbitrary, that is, the scale
value is not specified. The temperature (in degrees Celsi-

40



us) is laid off on the vort.ical axis. Find the, final result of
mixing whose beginning is shown in each figure. When
either all the water freezes or all the ice melts, determine
the final temperature.
2.58. A phase diagram represents the relationship be­
tween the temperature and pressure at the boundary that
separates two phases. To which phases do the regions 1, 2,
and 3 correspond?
2.59. The phase diagram of water is shown schematical­
ly in the figure. Using this d iagram , ex plain this partic­
ular dependence of the melting point of ice on the exter­
nal pressure.
2.60. The compressibility of a liquid does not remain
constant under pressure variations. How, knowing the
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dependence of compressibility on pressure within a cer­
tain pressure interval from PI to P2' can we find the ratio of
volumes at these values of pressure?
2.61. As is known, the density of water at first grows
when water is heated frorn 0 "C hut then, at 4 O(~, begins
to drop, as shown ill the figure. Does the ex planation of
this lie in the fact that in introducing the metric system
of units the weight of a definite volume of water at 4° C
was taken as the unit of weight (subsequently this was
taken as a unit of mass)?
2.62. The wall of a house consists of two layers with
different thermal conductivity coefficients. The ternpera-
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ture of the outer wall is 1\ and that of the inuer wall is
T 2. Temperature variations inside the wall are shown in
the figure. What layer, the inner or the outer, has a high­
er thermal conductivity coefficient?
2.63. A rod with a cross-sectional area 5' and initial
length l is elongated by ~l due to a tensile stress. The
modulus of longitudinal elasticity of the material of the
rod, or Young's modulus, is E. Find the bulk energy den­
sity for the deformation of the rod.
2.64. Two bars 1 and 2 of the same cross-sectional area
and the same length but made of different materials are

:t"ig. 2.63

clumped between two undeformahle walls. The materials
of the bars differ in mechanical and thermal properties.
What must be the relationship between Young's moduli
and the linear coefficients of thermal expansion so that
heating the bars does not change the position of the
boundary between them? Under what conditions does the
deformability of the walls have no effect 011 the result?

3. Electrostatics

3.1. Three charges are placed at the vertices of an iso­
sceles right triangle, with charges +Q and -Q at the acute
angles and a charge +2Q at the right angle. Determine
which of the numbered vectors coincides in direction with
the field produced by these charges at a point that is the
middle of the hypotenuse.
3.2. Two point-like charges a and b whose strengths are
equal in absolute value are positioned at a certain distance
from each other. Assuming the field strength is positive
in the direction coinciding with the positive direction of
the r axis, determine the signs of the charges for each
distribution of the field strength between the charges
shown in Figures (a), (b), (c), and (d).
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3.3. Two point-like charges are positioned at points a
and b. 1"he field strength to the right of the charge Qb on
the line that passes through the two charges varies accord­
ing to a law that is represented schematically in the
figure accompanying the problem (without employing a
definite scale). The field strength is assumed to Le posi­
tive if its direction coincides with the positive direction
011 the x axis. The distance between the charges is l.
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Find the signs of the charges and, bearing in mind that
the field strength at a point Xl is zero, the ratio of the ab­
solute values of charges Qa and Qb and the coordinate .L2

of the point where the field strength is maximal.
3.4. Two mutually perpendicular straight conductors
carry evenly distributed charges with linear densities 1'1

and 't 2. Among the lines of force representing the field
generated by these conductors there is a straight line pass­
ing through the point of intersection of the conductors.
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At what anglo a with respect to the conductor wil.h the
charge densi ty T 2 does this Ii ne pass? *

A

xt:!

• The statement of the problem is not quite proper. The electro­
static interaction between the charges makes it impossible
to maintain an even distribution of charge on the conductors.
The same situation is present in other problems (e.g. see
Problems 3.5 and 3.6). The difficulty can be overcome by
assuming that each conductor consists of a large number of
sufficiently small sections isolated from each other.

3.5. An infinitely long straight conductor carrying a
charge with a linear density +1' and a point charge

+,. I
III ill

t

I _Q

Fig. 3.4 Fig. 3.5

-Q are at a certain distance from each other. In which
of the three regions (I, II, 01" I I I) are there points that (a)
lie on the line passing through tho point charge per­
pendicular to the conductor. and (b) at which ..th~ field
s trength is zero 1)
3.6. Two mut.uall y perpendicular infinitely long straight
cond uctors carrying uni Iorruly distributed charges
of linear densities 'tl and 't2 are positioned at a distance
a from each other. How docs the interaction between the
conductors depend on a?
3.7. Near an infinitely large flat plate with a surface
charge density o on each side, the field strength is**

E-~
- eo8 '

while the field produced by a point charge at a distance
r frorn the chargo is

E== Q
411808r 2 •

Prove that for a uniformly charged disk with a surface
charge density a (on each side), the electric field strength
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on the axis of the disk is the same as for an infinitely
large flat plate if the distances arc small in comparison
with the disk's radius R, and is the same as for a point
charge if the distances are large.

** Usually the value of the field strength given in textbooks is
half the one given here, since there it is assumed that the
charge is on a geometric plane.

3.8. At a certain distance r l'rorn an infinitely long
straight conductor with a unlforml y distributed l i nnar
charge 't there is a dipolo with an electric moment Pel

directed along the Ii no of Iorce represeul.ing the field gen­
erated by the conductor at the point where the dipole is

Fig. 3.6

Pet E
-----~--~

Fig. 3.8

located. Assuming the arm of the dipole is very small
compared to the distance r, Iind the Iorce with which the
field acts on the dipole.
3.9. The figure shows the schematic of an absolute elec­
trometer. The potential difference that is to be mea­
sured is applied between the plates Z and 2, with the upper
plate connected to one arm of a balance beam.* The pan
connected to the other arm is loaded with weights until
balance is achieved, that is, when the upper plate begins
to move upward. In this way the force acting between the
charged plates is measured, and this enables one to de­
termine the magni tude of the potential di fference between
the plates. It the aquiltbrium in the electrometer stable or
unstable?

• The figure does not show the protecting rings around plates 1
and 2 with the same potentials. Theso are used to ensure
that the field is as uniform as possible.

3.10. A small thin metal strip lies on the lower plate of
a parallel-plate capacitor positioned horizontally. The
voltage across the capacitor plates is increased gradually
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to a value at which the electric force acting on the strip
becomes greater than the strip's weight and makes the
strip move toward the upper plate. Does the force acting
011 the strip remain coust.anj during the lifting process?

Fig. 3.9 Fig. 3.10

3.11. Into the region of space between the plates of a
parallel-plate capacitor there Ilies (a) an electron and (b)
a negatively charged ion with a velocity directed parallel
to the plates. Both the electron and the ion have rec.eived
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Fig. 3.1 t
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Fig. 3.12

their initial kinetic energy by passing the same potential
difference U 0' and the potental difference across the ca­
pacitor is U. The distance between the plates is d. Which
of the two particles will travel a greater distance before
hitting the positively charged plate if both fly into the
capacitor at a point that is exactly in the middle of the
distance between the plates?
3.12. An electric dipole is positioned between a point­
like charge and a uniformly charged conducting plate. III
which direction will the dipole move?
3.13. A point-like charge Q and a dipole with an elec­
tric moment Pel are separated by a distance that is consid­
erably larger than the arm of the dipole, with the result
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that the dipole may be considered as being point. The
dipole's axis lies :'along the lines of force 'of the point
charge. Compare the force acting 011 the di pole ill the field
of the point charge with t.hat acting 011 the point
charge ill the Held of the di pole.
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Fig. 3.t3
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Fi~. 3.14

3.14. A small uncharged sphere is positioned exactly
in the midpoint between two charges whose absolute val­
ues are the same but whose signs are opposite. Suppose
the sphere is shifted sornewhat. Will it remain in the
new position or will it move in some direction?
3.15. A. small uncharged metal sphere is suspended hy
a long nonconducting string in the region between t.he

88 80
+

Fig. 3.15

(c)

Fig. 3.t6

(b)

vertically positioned plates of a parallel-plate capacitor,
closer to one plate than to the other. How will the sphere
behave?
3.16. Two conducting spheres carry equal charges. 'I'he
distance between the spheres cannot be considered large
in comparison with the diameters of the spheres. In
which case will the force of interaction between the
spheres be greater (in absolute value): when they carry like
charges (Figure (a)) or when they carry unlike charges
(Figure (b))?
3.17. A point charge is surrounded by two spherical
layers (Figure (a)), with the electric field st.rengt.h as a
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function of distance having the form depicted in Fig­
ure (b) (on the log-log scale). In what layer (the inner or the
outer) is the dielectric constant greater and by what
factor?

(Q)

0.2

-0.4 -D.? 0

logtj

(b)

Fig. 3.t7

3.18. The region of space between the plates of a paral­
lel-plate capacitor is filled with a liquid dielectric with
a dielectric const.an t B1 • A solid dielectric wi th a dielec­
tric. constant g2 is immersed in the liquid. The lines of

...
•.,

------------
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-~...,
Fig. 3.18

force in t.he liquid have the shape shown in the figure.
Which of the two dielectric constants is greater?
3.19. Various potential d istrihutions between two .point
charges are shown in Figures (a)-(d) (the charges are
equal in absolute value). Determine the signs of the
charges for each case.
3.20. Two point charges, QJ and Q2' are positioned
at a certain distance from each other. Tho curves in t.ho
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figure represent the distri bution of the potential along
the straight line connect.i ng the t\VO charges. At which
points (1, 2, and/or 3) is the electric field strength zero?

Cd)(0) (b) (C)

Fig. 3.19

o r 0 r 0 1---___ 0 1--------:..-.---

What are tho signes of the charges QI and Q2 and which
of the two is greater in magnitude?
3.21. Two equal like charges are positioned at a cer­
tain distance from each other. How do the electric field

r.p

r

i 2
~-----

Fig. 3.20 Fig. 3.22

strength and the potential vary along the axis that passes
through the midpoint of the distance between the charges
at right angles to the line connecting the charges?
3.22. A potential difference is applied between a con­
ducting sphere and a conducting plate C'plus" on the sphere
and "minus" on the plate). The dimensions of the plate
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are much larger than the distance between sphere and
plate. A, point positive charge. is moved from P?int 1
to point 2 parallel to the plate. Is any work dono In the
process?
3.23. Two parallel-plate capacitors with different dis-
tances between the plates are connected in parallel to a
voltago source. A poin t posit.ivo charge is moved from a
point 1 that is ex aetly j n the midtl le between the plates
of a capacitor Cl to a point 2 (or a capacitor C2) that lies

+

~

Fig. 3.24
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at a distance from the negative plate of C2 equal tOlllalf
the distance between the plates of Cl . Is any work done
in the process?
3.24. The space between the rectangular plates (with
sides a and b) of a parallel-plato capacitor (the distance
between the plates is l) is filled with a solid dielectric
whose dielectric constant is c. The capacitor is charged to
a certain potential difference and disconnected from the
voltage source. After that the dielectric is slowly moved
out of the capacitor, which lTIOanS that the section x not
fi lled with the dielectric gradually increases in size. How
wi ll the potential difference between the plates and the
surface charge densities on both parts of the capacitor
(with and without the dielectric) change in the process?
3.25. At which of the two points, 1 or 2, of a charged
capacitor with nonparallel plates is the surface charge
density greater?
3.26. The diameter of the outer conductor of a cylindri­
cal capacitor is D 2 • What should the diameter of the core,
D 1 , of this capacitor be so that for a given potential differ­
ence between the outer conductor and the core the elec­
tric field strength at the core is minimal?
3.27. Four capacitors, ct. C2, C3, and C4, are connected
as shown in the figure. A potential di fference is applied
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between points A and B. What should the relationship
between the capacitances of the capacitors be so that
the potential difference between points a and b is zero?

+~

Fig. 3.25 Fig. 3.26 Fig. 3.27

3.28. An electric charge with a constant volume density
p is distributed within a solid sphere of radius R. Deter­
mine and represent graphically the radial distributions
of tho electric Held strength and tho potential inside and
outside the sphere.
3.29. In the region of space between the plates of a par­
allel-plate capacitor there is a uniforrnly distributed pos­
itive charge with a volurne density p. The plates are
connected electrically and their potential is set at zero.
Calculate and draw a sketch of the distributions of the
potential and electric field strength between the plates.
3.30. Two series-connected capacitors of the sarne size,
one filled with air and the other with a dielectric, are

C1 C2

Fig. 3.30
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Fig. 3.32

connected to a voltage source. To which of the capacitors
a higher voltage is applied?
3.31. Two identical air capacitors are connected in se­
ries. How will the charge on and potential difference across
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each capacitor change when the distance between the
plates of OBe capacitor is increased in the following cases:
when the capacitors are connected to a DC source, and
when the capacitors are first charged and then disconnected
from the DC source?
3.32. Two identical parallel-plate air capacitors are con­
nected in one case in parallel and in the other in series.
In each case the plates of one capacitor are brought closer
together by a distance a and the plates of the other are
moved apart by the same distance a. How will the total
capacitance of each system change as a result of such
manipulations?
3.33. A parallel-plate capacitor is filled with a dielec­
tric up to one-half of the distance between the plates.

£.pI

2

Fig. 3.33 Fig. 3.34

The manner in which the potential between the plates
varies is illustrated in the figure. Which half (lor 2)
of the space between the plates is filled with the dielectric
and what will be the distribution of the potential after
the dielectric is taken out of the capacitor provided
that (a) the charges on the plates are conserved or (b) the
potential difference across the capacitor is conserved?
3.34. A capacitor is partially filled with a dielectric.
In which of its parts is the electric field strength greater?
What about the electric displacement and the energy
density?
3.35. Two parallel-plate capacitors, one filled with air
and the other with a dielectric, have the same geometric
dimensions, are connected in parallel, and are charged to
a certain potential difference. In which of the two capac­
itors is the electric field strength greater, in which is the
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electric displacement greater, in which is the energy den­
sity greater, and in which is the surface charge density on
the plates greater?
3.36. Three point-like charges are positioned at the ver­
tices of an equilateral triangles. Two are equal in magni­
tude and are like, while the third is opposite in sign.

+

Fig. 3.35
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Fig. 3.36

What should the magnitude of the third charge be so
that the total interaction energy of the charges is zero?
3.37. The dielectric filling the space between the plates
of a capacitor that has been charged and then disconnect­
ed from the voltage source is removed. How should the
distance between the plates be changed so that the energy
stored in the capacitor remains the same? Explain the
origin of the change in energy.
3.38. A capacitor between whose plates there is a dielec­
tric with a dielectric constant e is connected to a DC
source. How will the energy stored in the capacitor change
if the dielectric is removed? Explain the cause of this
change.
3.39. A parallel-plate capacitor that has been first charged
and then disconnected from the voltage source is sub­
merged in the vertical position into a liquid dielectric.
How does the level of the dielectric. between the plates
change in the process?
3.40. A parallel-plate capacitor with vertical plates is
connected to a voltage source and then submerged into a
liquid dielectric. How does the level of the dielectric
between the plates change in the process? Explain the
change of the energy stored by the capacitor.
3.41. A cube has been CHt out from a piezoelectric crys­
tal. When the cube was compressed, it exhibited electric
charges on the faces: a positive charge on the upper face
and a negative charge on the lower (Figure (a)). When
the cube was stretched, the charges were found to change
their signs (Figure (b)). What will be the signs of the
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charges on these faces if pressure is applied as shown in
Figura (c)?
3.42. The relationship that exists between the electric
displacement and the electric field strength in a ferroelee­
tric is given by the curve of primary polarization and
a hysteresis loop. Are there any points on the hysteresis

v
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Fig. 3.42

(b)

Fig. 3.41
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Fig. 3.43
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loop to which we might formally assign a dielectric con­
stant equal to zero or to infinity?
3.43. A charged parallel-plate capacitor is moving
with respect to a certain system of coordinates with a ve­
locity v directed parallel to the plates. What is the ratio
of tho electric field between the plates in this coordinate
system to the same quantity in the system of coordinates
in which the capaci tor is at rest?

.~. Direct Current

4.1. Two conductors, 1-3-5 and 2-4-6, connected points
with equal potentials on the resistors R a and R b' so that
no current flows through either of them. Will there be
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currents flowing through thorn a nrl through tho 3-4 sec­
tion if tho key K is closedr Will this lead to a change in
the read ing of the ammeter? -

Fig. 4.1

2R

:Fig. 4.2

4.2. IIo\\! wi ll the rending of the ammeter change if the
key K is closed?
4.3. A voltage Uo is applied to a potentiometer whose
sliding contact is exactly in the middle. A voltmeter V
is connected bet\veen the sliding contact and one fixed
end of the potentiometer. It is assumed that the resis­
tance of the voltmeter is not very high if compared with
the resistance of the potentiometer. What voltage will tho
voltmeter show: higher than, less than, or equal to Uo/2?
4.4. A "black box" is an electric unit with four termi­
nals, 1, 2, 3, and 4, and an unknown internal sf.ructure.
The box shown in Figure (a) and (b) possesses the follow­
ing properties: if a constant voltage of 220 V is applied
to terminals .1 and 2, a voltage of 127 V appears across
terminals 3 and 4 (Figure (a)), while if a voltage of 127 V
is applied to terminals 3 and 4, the same voltage of
127' V appears across termi nal s 1 and 2 (Figure (b)) ..
What is inside the "hlnck box"? Tho Iormulatiun of the
problem is quite meaningful if the voltages are measured
by electrostatic volt.meters, which do not COnSUIJle elec­
tric current. If voltmeters of tho magnetoclect.ric, thor­
mal, or electromagnetic t¥pe are employed, the voltages
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across the "out" terminals of the "black box" may some­
what differ from the ones indicated in Figures (a) and (b).
4.5. Two potentiometers are connected in series, and
their sliding contacts are connected electrically, too. In
one potentiometer the sliding contact remains fixed at

o

Fig. 4.3 Fj~. 4.5

+1 3+ +f 3+

220 V 127V 127V 127V

2 4
4 -

(n ) (b)

Fig. -i.4

the midpoint. How will the reading of the ammeter vary
as the sliding contact of the second potentiometer is
moved Irorn one end of the potentiometer to the other?
4.6. A constant voltage Uo is applied to a potentiome­
ter of resistance R connected to an ammeter. A constant

r

x R ix

u

UQ

Fig. 4.fi Fig. 4.7

resistor r is connected to the sli ding contact of the poten­
tiometer and the fixed end of the potentiometer (after an
ammeter). How wil l the reading of the ammeter vary as
the sliding contact is moved from one end of the p0t.ep-



tiometer to the other? The resistance of the ammeter is
assumed to be negligible.
4.7. To measure a small emf (of, say, a galvanic cell OJ:"

a thermocouple) the so-called balancing method is em­
ployed. The circuit diagram of this method is shown in
the figure. Here ~x is the sought emf, ~ is the source of
current whose emf is much higher than ~x, G is a gal­
vanornetcr with the zero in the middle of the scale, A is
an ammeter, and R is the resistance box. How should one
operate this circuit so as to ensure an accuracy in measur­
ing ~x that is determined by the precision of the measur­
ing devices?
4.8. Two resistors with resistances R l and R 2 are con­
nected in series, and so are two capacitors wi th capaci-

1

R. R2

A

H
C. c2

Fig. 4.8 Fig. 4.10

Fig. 4.9 Fig. 4.12

t ances C1 and C2. The two systems arc connected in paral­
lel and an external voltage is applied to the new system
(see the figure accompanying the problem). What must
be the relationship between R l , R 2 , Cl , and C2 for the
potential difference between the points a and b to be
zero?
4.9. All the resistances and ernfs shown in the figure
accompanying the problem are assumed known. How
many values of current can exist for such a circuit? How. , . .
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many equations for finding these values must we con­
struct on the basis of Kirchhoff's first law and how many
must we construct OIl the basis of Kirchhoff's second law'?
4.10. Twelve conductors are connected in such a way
that they form a cube, and an emf source is co nner tr d
into an edge of the cube. All the resistances and the emf's
are known. There are eight junctions (eight vertices of
the cube) and six loops (six faces of the cube) in the cir­
cuit. Construct tho equations for determining all the cur­
rents in the circui t.
4.11. A source of electric current with an emf ~~o and
an Internal resistance r is connected to an external circuit
with a resistance R. What must be the relationship be­
tween rand R for the power output in the external circuit
to be maximal? What is the efficiency of the current source
in this case, provided Lhat the power output in the
external circuit is assumed to be the useful output?
4.12. In two circuits, each of which contains a DC
source and an external resistance, the max irnal currents
aro the same, while the maximum power output in the
external resistance of one circuit is twice that in the other .
.In what parameters do these circuits differ?
.1.13. ADC source is connected to a rheostat. When the
sliding coutact is x dist ant frorn l'itlll'I' PlId or the rheo-

Fig. 4.13 Fig. 4.16

stat (Lite length of tho rheusl.at is set at unity), the power
output ill the rheostat is the sarno in hot.h cases, Deter­
rnine the i nt.ornal resistance of the DC source if tho re­
sistance of the thcostat is R.
4.14. flow must a large number of galvanie cells, each
having the same emf G and tho same internal resistance
r, be connected so that in an external circuit whose re-
sistance is R the ~ower out~ut is maximal? .



4.15. Can a circui t be constructed in which the displace­
ment current in the capacitor remains practically con­
stant over a definite tirne interval?
4.16. A DC source with known emf 0 is charging a ca­
pacitor C. After the charging process has been completed,
the capacitor is disconnected, via a key K, from the DC
source and is connected to a resistor R, through which
the capacitor discharges. The capacitance of the capacitor
and the resistance of the resistor are selected in such a
way that the charging process takes several minutes, so
that the discharge current can be registered by a measur­
ing device, G. The results of measurements are used to
draw a rough curve on a diagram in which the time of
discharge is laid off on the horizontal axis and the loga­
rithm of the current, on the vertical axis. Determine the
law by which the current varies and the curve represent­
ing the dependence of the logarithm of the current on
the time of discharge. How can the curve help in deter­
mining the parameters of the discharge circuit, Rand C?
4.17. A capacitor of capacitance C is charged to a po­
tential differenc.e U0 and is then discharged through a re-

Fig. 4.t7 Fig. 4.18

sistance R. The discharge current gradually decreases,
with a straight line 1 corresponding to this process (see
the figure accompanying the problem, where time is laid
off on the horizontal axis and the Iogari thm of the cur­
rent, on the vertical axis). Then one of the three para­
meters, Un, R, or C, is changed in such a manner that the
In I vs. t dependence is represented by the straight line 2.
Which of the three parameters was changed and in what
direction?
4.18. A charged capacitor is discharged through a re­
sistor t\VO times. The time dependence of the logarithm
of the discharge current obtained in the two experiments
is represented by the two straight lines" 1 and 2, in the
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figure accompanying the problem. The experimental con­
ditions differed only in one of the three parameters: the
initial voltage of the capacitor U, the capacitance C, or
the resistance R. Determine the parameter that was var­
ied in these experiments and in which case this para­
meter is greater.
4.19. Prove that when a capacitor of capacitance C that
has been charged to a potential difference U0 is discharged
through a resistance R, the amount of heat liberated in
the conductors is equal to the initial energy stored in the
capacitor.
4.20. Prove that when a capacitor is charged through a
resistor R from a DC source with an emf equal to ~ half
of the energy supplied by the source goes to the capacitor
and half, to heating the resistor.
4.21. A charged capacitor is connected to an uncharged
capacitor with the same capacitance. Determine the
changes in the energies stored by the two capacitors and
explain the origin of these changes from the viewpoint of
energy conservation.
4.22. A conducting disk is rotating with an angular ve­
locity co. Allowing for the fact that electrons are the cur-
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Fig. 4.22 Fig. 4.23 Fig. 4.24

rent carriers in a conductor, determine the potential
differenco between the center of the disk and the edge.
4.23. In the Tolman-Stewart experiment, a cylinder is
mounted on a shaft and is rotated very rapidly. The sur­
face of the cylinder is wound with many turns of wire of
length l in a single layer. After the cylinder has been set
spinning at a large angular velocity, it is braked to a
stop as quickly as possible. In the circuit consisting of
the wire and a measuring device, this braking manifests
itself in a pulse of current caused by the potential differ­
ence that appears between the ends of the wire. If the
potential difference is registered by an oscillograph, we



obtain a curve similar to the one shown in the figure
accompanying the problem, where time is laid off on the
hori zont.al axis.* How, knowing the initial linear veloc­
ity of the winding, the length of the wire, and the vol­
tage oscillogram, can one determine the electron charge­
to-mass ratio?

• In the Tolman-Stewart experiment, the quantity measured
was not the potential difference but the amount of electricity
passing through the circuit. This was done using a device
called the ballistic galvanometer.

4.24. The section of a conductor between the points a
and b is being heated. Does this lead to a redistribution
of potential along the conductor (the arrow indicates
the direction in which the current is flowing)? Will the
passage of current change the temperature distribution in
the conductor?
4.25. A constant voltage is applied to a metal wire. The
current passing through the wire heats the wire to a cer­
tain temperature. Then half of the wire is cooled by a

Conductor
\ \.

Semiconductor

Fig. 4.25 Fig. 4.27

stream of air from a fan. How will the temperature of the
other half of the wire change in the process?
4.26. Two electric bulbs whose rated voltage is 127 V
and whose rated wattages are 25 and 150 Ware connect­
ed in series to a DC source of 220 V. Which of the two
bulbs will burn out?
4.27 • A conductor and a semiconductor are connected in
parallel. At a certain voltage both ammeters register the
same current. Will this condition remain as such if the
voltage of the DC source is increased?
4.28. A conductor and a semiconductor are connected in
series. The voltage applied to this system is selected in
such a way that the readings of the voltmeters Vl and
V2 coincide. Will this condition remain unchanged if the
voltage of the DC source is increased?
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li .29. A thermionic valve, or diode, has a heated fila­
ment and a plate near it. The dependence of the current
flowing between fil ament and plate on the voltage applied
to valve (the curreut-voltugc characteristic) is as follows.
First the current grows with voltage, but then goes into a
plateau at a sufficiently high voltage. Why, notwithstand­
ing the fact that the filament may (emit the number of

Fig. 4.28 Fig. 4.29
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u

electrons required for the saturation current to set in,
the latter does not manifest itself at an arbitrarily small
voltage between the electrodes? In which respect does
curve 1 differ Irorn curve 2 from the standpoint of the
experimental conditions if the two are obtained using the
same device?
4.30. A cutoff voltage is applied between the cathode and
the anode of a thermionic valve C"minus" at the anode and
"plus" at the cathode). The cathode temperature, how­
ever, is sufficient for thermionic emission to manifest itself.
If the direction of the electric field is reversed by applying
between the cathode and the anode a voltage at which
saturation current will Ilow through the valve, will the
temperature of the cathode maintained in the cutoff di­
rection of the field remain the same?
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4.31. For a current passing through an electrolyte (Fig­
ure (a)), the distribution of potential between the elec-
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irodes is ~hown in Figure (b). Why, notwithstanding the
fact that the eleclrodes are flat and the distance bet.ween
them is rnurh smaller than their Iiucar di mensicus, is \ he
jield between the electrodes uo nu ni Iurru?
4.32. The distribution of potential between t.he cathode
and anode in a glow discharge is shown in th~ figure accorn­
panying the problem (the distance from t.he cathode is
laid off on the horizontal axis). Within which regions of
space (sec the numbers on the horizontal axis) is there a
positive volume charge, a negative volume charge, and
a volume charge that is practically zero?
4.33. In the plasma of a gas discharge, the concentration
of electrons and that of posi tive ions are practically the
same. Does 1his mean that. the current densities created
by the motion of electrons and ions are also the same?
Will an ammeter connected in series wi th the gas discharge
gap show the sum of the electron and ion currents or
their di ilerence?
4.34. A negatively charged particle is accelerated in its
motion from a cathode C to an anode A, passes through
an apert ure in the Iatt.er , and InOYe~ toward a Faraday
cylinder F' that is at the same potential as the anode
(Figure (a)). For the sake of simplicity it wi ll be as­
sumcd that the particle moves frorn A to]? wit.h a constant
velor i ty. Determine the moment of time when a measur­
ing device G in the circuit will register a current (the
tirne is reckoned from t.he moment when the particle
leaves the anode) and the form of the current, that is,
whether the current is in the Iorm of a pulse when the
particle leaves the anode (Figure (b)) or whether it is a
pulse when the particle enters the Faraday cylinder (Fig­
ure (c)) or whether there are two pulses (one when the
particle leaves the anode and the other when the particle
enters the Faraday cylinder; see Figure (d)) or whether the
current is steady over the entire motion of the particle
from the anode to the Faraday cylinder (Figure (e)).
4.35. The behavior of the potential energy of an elec­
tron inside and outside a metal is shown for two metals
in Figures (a) and (b). The same figures indicate the Iimi t­
ing kinetic energies WF of electrons in the metals (the
Fermi levels) at T = 0 K. If the rnet.a ls are brought into
ccntact, what will be the values of the internal and exter­
nal contact potential differences? In which metal will the
electron concentration be higher?



~.3G. The energy distribution function for electrons in a
metal at absolute zero can be written as follows:

(4.36.1 )

where C is a constant coefficient that is a combination of
universal constants. This function terminates at WF ,

which is the limiting energy, or the Fermi level. Using
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(4.36.1), establish how the limiting energy depends on
electron concentration.
4.37. The dependence of the logarithm of conductivity,
In a, on T-l, where T is the temperature, for two semi­
conductors is shown in the figure. In which of the two
semiconductors is the gap (the forbidden band) between
the valence band and the conduction band wider?
4.38. The dependence of the logarithm of conductivity,
In o , on 11T for two semiconductors is shown schematical-



Iy in the figure. In which respect do these semiconductors
differ?
4.39. The distribution of potential near the boundary
between two semiconductors with different types of COIl­

duction depends on the direction of the applied external

lnO

1fT

Fig. 4.38 Fig. 4.39
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voltage. Which distribution corresponds to the blocking
direction and which, to conduction? To what semiconduc­
tors do the left and right branches of the curves in the
figure belong?
4.40. The current-voltage characteristic of a semicon­
ductor diode based on the properties o~__~~~._I:.:~ junction
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Fig. 4.40

has two branches: the upper right branch and the lower
left branch. Since the right branch corresponds to SIn all
voltages and the left branch to considerably higher vol­
tages (with the currents in the conductive direction being
much higher than the currents in the blocking direction),
the two branches are constructed using di fferent scales.
What is the explanation for the existence of the left
branch and in what manner does the current in the block­
ing direction depend on the temperature of the diode?
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4.41. rrhe phenomenon of secondary eiectron emission
consists in the following. When electrons bombard a sol­
id surface, the surface emits secondary electrons (and
partially reflects the primary electrons, which Impinge
on the surface). Secondary electron emission is character­
ized by the secondary emission coefficient (J, which is the

6

Fig. 4.41

ratio of the secondary electron current to the primary
current. The dependence of the secondary emission coef­
Iicient on the primary electron energy WI for a certain
dielectric is depicted in the figure. At (J == 1 the surface
of the dielectric does not change its potential under elec­
tron bornbardment, since the number of electrons leav­
ing tho surface every second is equal in this case to the
number of electrons bombarding the surface every sec­
ond. The two points a and b on the (J vs. WI curve cor­
respond to a ==: 1. At which point is the process stable
and at which is it unstable?
4.42. Under secondary electron emission (see Prob­
lem 4.41), the energy distribution function F (~V2) for

F(W,)

2

o
Fig. 4.42

secondary electrons is represented sufficiently well by two
curves (1 and 2) shown in the figure accompanying the
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problem. Which of the two curves represents the primary
electrons and which, the "true" secondary electrons?

5. Electromagnetism

5.1. Currents II and I 2 flow in the same direction along
two parallel conductors, with /1 > 12 • In which of the
three regions I, I I or I I I, and at what distance from the

Ii

IT r
I

•
If If

II ill N..
]I[ 12

Fig. s.i Fig. 5.2

conductor carryi ng current 11 is the magnetic i nduction
equal to zero?
5.2. Two mutually perpendicular conductors carrying
curren ts II and 12 lie in one plane. Find the locus of
points at which the magnetic induction is zero.
5.3. Equal currents are flowing along three conductors:
a ring of radius R (Figure (a)), an infinitely long straight

o
(n) (b)

Fig. 5.3_

(C)

~.;-

conductor that forms a loop of the same radi us R (Fig­
ure (b)), and an infinitely long straight conductor that also
forms a loop of radius R but is broken at the point where
the loop touches the conductor (Figure (c)). Find the re­
lationships that link the magnetic induction vectors at
the center of each circle.
5.4. Three conductors carrying currents are perpcndicu-
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lar to the plane of the drawing. They intersect the plane
at three points that lie on a single straight line, wi th the
distances from the middle conductor to the other two
being equal. The currents in the outer conductors flow
away from the reader, while the current in the middle con~

rluctor flows toward the reader. How is the magnetic Held
vector directed at the point on the straight line that is
perpendicular to the straight line passing through the

8"

a M
If 12 B

X M x

@ e
0 0

Fig. 5.5 Fig. 5.6 Fig. 5.7

three conductors in the plane of the drawing and is sepa­
rated from the middle conductor by a distance equal to
the distances between that conductor and the outer con­
ductors? All three currents are equal in magnitude.
5.5. Along four parallel conductors whose sections with
the plane of the drawing lie at the vertices of a square
there flow four equal currents (the directions of these
currents are as follows: those marked with an "x" point
away from the reader, while those marked with a dot
point to the reader. How is the vector of magnetic
induction directed at the center of the square? 1
5.6. Two infinitely long parallel conductors carrying
currents are directed at right angles to the plane of the
drawing. The maximum of magnetic induction is at a
point M that lies in the middle between the conductors.
The direction of the magnetic induction vector B at this
point coincides with the positive direction on the x
axis. Determine the direction of the currents flowing in
the conductors and the relationship that exists between
these currents.
5.7 ~ Two infini tely long parallel cond uctors carrying
currents are directed at right angles to the plane of the
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drawing. The magnetic induction at a point M that lies
in the middle between the conductors is zero. To the
right of this point, the magnetic induction vector points
upward, at right angles to the x axis. Find the direction
of the currents flowing in the conductors, the direction
of the magnetic induction vector to the left of point M,
the relationship between the currents, and the point on
the x axis at which the magnetic induction is maximal.
The distance between the conductors is a.
5.8. Prove solely by reasoning (without performing any
calculations) that the magnetic induction on the axis at
an end face of a very long solenoid is half the value in the
middle of the solenoid. A "very long solenoid" is one
whose length is much greater than the diameter.
5.9. A current flows clockwise in a flat square loop. In

o
Fig. 5.9 Fig. 5.10 Fig. 5.11

the plane of the loop there lies an infInitely long straight
conductor carrying a current whose direction is designat­
ed by the arrow in the figure. How will the loop move
in the magnetic field created by the current flowing in the
straight conductor and how wi ll the shape of the loop
change as a result of the action of this field?
5.10. A conducting loop carrying a current is placed in a
nonuniform magnetic field. How will it move as a result
of the action of this field?
5.11. A direct current (constant in magnitude and di­
rection) flows in a contour made from soft wire. What
shape does this contour tend to acquire as a result of the
act.ion of the magnetic field created by the current?
5.12. A small flat contour with a current flowing in it is
placed successively at three points on the axis of a sole­
noid in which a current also flows in the same direction.
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The points are at the middle of the solenoid (point 1), at an
end face (point 2), and outside the solenoid at a distance
from an end face equal to one-half the length of the so­
lenoid (point 3). The plane of the contour and the plane
of the cross section of the solenoid are parallel. At which
of these three points does the contour experience the
greatest interaction with the solenoid and at which is
the force minimal? Is the force attractive or repulsive at
these points? The length of solenoid is considerably larger
than the diameter.
5.13. At a small distance from a solenoid carrying a cur­
rent thero is placed a contour with a current in such a

Fig. 5.12 Fig. 5.13

manner that the solenoid's axis lies in the plane of the
contour. The directions of the currents in solenoid and
contour are shown by arrows. How docs the contour
move? I-Iow will it IJlOVe if the current in it flows in the
direction opposite to the one shown in the figure?
5.14. Between two fixed contours, 1 and 3, carrying cur­
rents that flow in the same direction there is suspended

2

Fig. 5.1" Fig. 5.15

another conl.our , 2, that also carries a current. Contour 2
is oriented i 1\ such a manner that the forces caused by
the currents in contours 1 and 3 are opposite in direction,
equal in magnitude, and lie along a single straight line;
thus, contour 2 is in equilibrium. Is this state of equilib-
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Fig. 5.16

rium stable or unstable? Consider the case where the
current in contour 2 has the same direction as the cur­
rents in 1 and 3 and the case \vhere the direct ions are
opposite.
5.15. Two contours whose planes are parallel to each
other and are separated by a certain distance carry C.Ul'­

rents that flow in the same direction. One contour is left
fixed while the other is positioned in a different manner
with respect to the first: in one case its plane is turned
by 90°, in the other by 180°, while in the third case it is
just moved parallel to itself
over a certain distance. In
which of these three eases
one will have to perform the
greatest work and in which,
the smallest?
5.16. In a uniform magne­
tic field there are two charged
particles moving with velo­
cities VI and v 2 and carrying
equal charges, with I VI I === , v 2 I == v. The velocity of
one particle forms an angle CGl with the direction of the
field, while the other velocity Iorms an angle CG z• In
what parameters does the Inotion of one particle differ
frorn that of the other'? Detenntne which of the parame­
ters is greater for which particle.
5.17. The device shown in Figure (a) is commonly used
to measure the charge-to-mass ratio of tho electron. The
electrons that leave the cathode C are accelerated by an
electric field that exists in the space between the cathode
and the anode A. A fraction of electrons fly through the
hole in the anode. These electrons, leaving region I of tho
device, fly into the region where there is no electric Ilel d.
In this region the electrons are deflected from a straight
line via a magnetic field directed perpendicularly to the
plane of the drawing. This field is generated by two so­
lenoids. The region I I where the trajectory of tho elec­
trons is bent lies between these two solenoids. By increas­
ing the current flowing through the two solenoids connect
ed in series we can direct the electrons into a Faraday
cylinder F, with a galvanometer G registering the result­
ing current. Any further increase in the solenoid current
results in a drop in the current flowing through G, since
\~e electrons beg-in to. move along a circle of a srualler ra-

- . " ' . ~ . ..- .
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dius. The dependence of the galvanometer current on the
solenoid current is illustrated by the curve in Figure (b).
The following quantities are known in measurements: the

potential difference U
C between anode and cath­

ode, the curvature ra­
di us R of the axial line
of region II (assuming
that the majority of elec­
trons deflected by the
magnetic field travel
along this line), the num­
her of turns No per unit
length of solenoid, and
the solenoid current I
at which the galvano­
meter current is maxi­
mal. How to determine
the charge-to-mass ratio
of the electron knowing
the values of these quan­
ti ties?
5.18. A charged parti­
cle of HIHSS m and charge
Q has acquired a certain
veloci t y by passing
through a potential di Iier­

ence Uo• With this velocity it flies into the field of a
parallel-plate capacitor, with the distance between the
plates being L, the potential di fference bei ng U. The veloc-

r
I

~ --t--n-]-l- -- --
~

Fig. 5.18 Fig. 5.19

ity of the particle is directed parallel to the plates.
Where should the magnetic field that makes the particle
move along a straight line in the capacitor be directed
and what should its value be (the induction B)? ~ .
5.19. A direct current I is flowing through a plane in the
direction designated by an arrow. The plate is placed in a

• I. . .1
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transverse magnetic field B. As a result of the Hall effect
there appears a transverse potential difference. What is
the sign of the potential at point a if the plate is made of
metal and if the plate is an n-type or p-type semicon­
ductor?
5.20. Two contours are positioned in such a manner that
thei r planes are parallel to each other. Contour 1 carries
a current whose direction is designated by an arrow. The

Fig. 5.20 Fig. 5.21

contours move in relation to ODe another, but their planes
remain parallel in the process. What is the direction
of the current induced in contour 2 when the contours are
moved toward each other or away from each other?
5.21. A spiral made Irorn elastic wire is connected to a
DC SOUI"ee. The spiral is stretched. Will the current flowing
in tho spiral become greater or srnal ler in the stretching
process l.han tho i ni ti al current or will it remain un­
changed?
5.22. A solenoid carrying a current supplied by a DC
source with a constant emf contains an iron core inside

1

0-

Fig. 5.22

o

Fig. 5.23

it. How will the current change when the core is pulled
out of the solenoid: will it increase, decrease, or remain
the same?
5.23. Two identical inductances carry currents that
yarr with time according to linear laws, In which of the
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two inductances is the self-induction emf greater? Will
the values or signs of the self-induction emf's change if
the currents begin to increase in the opposite direction
after they pass through zero (with the linear laws retained
i Jl the process)?
5.24. A current that varies with time according to a law
depicted graphically in the figure passes through an induc­
tion coil. In which of the moments denoted in the figure

Fig. 5.24

4 t

L
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(0)

Fig. 5.25
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will the self-induction emf be maximal (the inductance of
the coil rernains unchanged in the process)?
5.25. Various circuits are used to observe the phenome­
non of self-induction. Among these are the circuits shown
iu Figures (a) and (h). III Figure (a), key K is init ial ly
opened and the current Ilows through the induction coil L
and resistor R connected iu series. In Figure (h), key J(
is initially closed and the current branches on to Rand
L. In both circuits the resistance of the coil J-I is much lo\v­
er than R. Can an induction emf be generated in either'
one of these circui ts that is higher than the emf of the
DC source?
5.26. When a certain circuit consisting of a constant
euif, an inductance, and a resistance is closed, the cur­
rent in it increases with time according to curve 1 (see
the figure accompanying the problem). After one parumo­
ter (G, L, or R) is changed, the increase in current follows
curve 2 when the circuit is closed a second time. Which
parameter was changed and in what direction?
5.27. A current is flowing in a circular contour 1 whoso
radius is R. A. second contour, 2, whose radius is much
srnaller than that of the first, is moving with a consl ant
velocity v along the r axis in such a manner that the
planes of the contours remain parallel to each other in th~
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course of the motion. At what distance from contour 1
will the emf induced in contour 2 be maximal?
5.28. A certain circuit consists of a DC source with emf
~, an induction coil L1, and a key Kl. No resistance is
present in the circui t. Another coil, £2, which is con­
nected electrically to a resistor R through a key K2, is
fastened to L1. At some moment in time key KI is
closed. After a certain tirne interval K2 is closed. flow do

Fig. 5.26

Fig. 5.27

Fig. 5.28
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Fig. 5.29

the current in the primary circuit (the one containing ~),

the induction emf in the secondary circuit (the one with
£2 and R), and the current in the secondary circuit vary
with timo?
5.29. An infinitely long straight conductor and a flat
rectangular contour with sides a and b and with N turns
lie in a single plane. The distance between the straight
conductor and the side of the contour closest to the
straight conductor is c. Determine the following quanti­
ties: (1) the mutual inductance of the conductor and the
contour; (2) the quantity of electricity induced in the
contour if the contour is rotated through goo about the
AB axis provided that a current I is flowing in the con­
tour and the resistance of the contour is R; (3) the work
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that must be done to rotate the contour through 180
0

about the AB axis provided that there is current I both
in the long conductor and in the contour and that the
sense of the current in the contour is clockwise (in the
plane of the drawing).
5.30. A common device used in electrical measure­
ments is the so-called Rogowski loop. It constitutes a

flexible solenoid that can be
transformed into a torus if
the two ends are brought to­
gether (Figure (a)). The leads
can be connected to an A C
ammeter, a ballistic galvano­
meter", or an oscillograph.
By circling a conductor with
a Rogowski loop one can mea­
sure an alternating current
flowing constantly in the
conductor or even isolated
changes in the current, such
as those that occur when the
current is switched on or off
or when pulses pass through
l ho circuit. Suppose the Ho­
gowski loop forms a toroid
that encircles a conductor
carrying a direct current I
(Figure (b)). The parameters
of the loop are as follows:
the cross-sectional area is ,S,
the number of turns is N,

the resistance of the winding is R, and the radius of the
toroid is r. It is assumed that thewidthd of the loop prop­
er is very small COIn pared to r. At a certain moment the
current is switched off; the current becomes zero in a very
short interval. The ballistic galvanometer in the circui t
of the loop measures the quantity of electricity Q that
has passed through the loop (and the galvanometer}.
IIow can one find the current I that was flowing in the
conductor prior to switch-off knowing the values of the
above-mentioned parameters?

• A ballistic galvanometer has a large period of oscillations.
It is commonly used to measure the quantity of elect.ricity
that flows in a cireui t in the form of a short pulse.

. . ,... 1 .
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5.31. A flat coil with a cross-sectional area S and with
N turns is placed in a magnetic field. The leads of the
coil are connected to an oscillograph. When the coil is
moved out of the lield, an induction emf is generated in
it, and the oscillogram of this emf is shown in the figure.
How do the maximal value of the emf, ~ Irm and the area
under the curve depend on the rate with which the coil is
moved out of the field?
5.32. Suppose that we have two solenoids of the same
length. Their diameters differ only to the extent to which

f\. ,I
)~-~~~_-_-r4_0 '.-.,( 0

Fig. 5.31
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Fig. 5.32

one can be fitted onto the other. The inductances of the
two solenoids can be considered the sallIe and equal to I~.

I-Iere are the ways in which the solenoids can be con­
nected:
: (1) the solenoids are connected in series and are sepa­
rated by a large distance;

(2) the solenoids are connected in parallel and are sep­
arated by a large distance;

(3) the solenoids are connected in series, one is fitted
onto the other, and the senses of the turns coincide;

(4) the solenoids arc connected in parallel, one is fitted
onto the other, and the senses of the turns coincide;

(5) the solenoids are connected in series, one is fitted
onto the other, and the senses of the turns are opposite;

(6) the solenoids are connected in parallel, one is
fitted onto the other, and the senses of the turns are oppo­
site.
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Fig. 5.33
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beterrnine the total ind uctance for each of the above
cases.
5.33. The current flowing in a cert.aiu inductance coil
varies in time according to the curve shown schematically
I in the figure. Draw the
~ curve representing the in~

duced emf as a function
of time (also schematically).
5.34. Two similar parallel
electron beams point in
the same direction. The
linear dimensions of the
cross section of each beam
are small compared to the
distance between the

beams. Suppose that v is the electron velocity and n
is the electron concentration in either beam. In a coordi­
nate system with respect to which the electrons are in
motion there are two types of interactions, the electrostat­
ic and the magnetic. Which of the two is greater in
magnitude?
5.35. Electric charges do not generate magnetic field in
a system of coordinates (better to say, frame of reference)
where they are at rest. The magnetic field that surrounds
a conductor carrying a current is generated by the charges
that are moving in the conductor. Since the electron con­
centration in a conductor is of the order of 1022 em -3, the
directional veloci ly of the electrons in the conductor is of
the order of one mi ll imcter per second (if the current den­
sity is estimated at 100 A/cn12) . We position the con­
ductor carrying the current in such a manner that it follows
the magnetic meridian at the point where the conductor
is present. Just as in Oersted's experiment, a magnetic
compass needle placed under the conductor will be de­
flected. If the needle is moved along the conductor with a
speed equal to the directional veloci ty of the electrons
in the conductor (i .e. of the order of several millimeters
per second), the electron wi ll be at rest in relation to the
needle and, since the magnetic field in the system connect­
ed wi th the needle must be nil, the needle will not be
deflected. More than that, if the needle is moved along the
conductor with a speed greater than that of the electrons,
the needle will be deflected in the opposite direction. Are
these assertions correct?
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5.36. How are the magnetic induction vector and the
magnot.ic field vector directed inside and outside a bar
magnet?
5.37. Two types of steel are characterized by the hyste-
resis loops shown in Figure (a) and (b). The loops are ob­
tained in the processes of magnetization and demagneti­
zation of the steels. Which of the two types is best suited

Fig. 5.34

Fig. 5.37

4

Fig. 5.38

Fig. 5.39

for using as the core of a transformer and which, for using
as a permanent magnet?
5.38. flow can one use the B vs, II graph (the magnoti­
zation curve) to determine the work that a source of cur­
rent must perform to magnetize a ferromagnetic. core of a
solenoid whose length is l and whose cross-sectional area
is S? The magnetization curve is shown in the figure ac­
companying the problem.
5.39. Does a hysteresis loop possess sections in which
we can formally assign to permeability a value that is
zero or infinite or negative?
5.40. A straight conductor passes through a ferromag­
netic toroid, as shown in the figure accompanying the
problem. The conductor carries a current that first grows
to a certain maximal value and then falls off to zero, as
a result of this the toroid becomes magnetized. Indicate
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the directions of the lines of force for magnetic induction
in the toroid and find the sections or points on the hyste­
resis loop corresponding to the state of the toroid after
the current has ceased to flow (see the figure accompanying
Problem 5.39).
5.41. Suppose we wish to calculate the circulation in­
tegrals of the magnetic field strength and magnetic induc­
tion along various contours, some of which lie entirely

Fig. 5.40

)i== 1

Fig. 5.41

in a vacuum while the other partially overlap a medium
with a permeability fl. The "x" inside a small circle
marks the section of a conductor carrying a current by
the plane of the drawing. Are all the circulation integrals
of the magnetic induction equal to each other? Is this
also true of the circulation integrals of the magnetic
fteld strength?

6. Oscillatory Motion and Waves

6.1. At two moments in time the displacements of a har­
monically oscillating point are the same. Can we state,
on the basis of what we have just said, that the phases at
these moments are also the same?
6.2. The oscillations depicted by curve 1 in the figure
are expressed by the equation x :::: A sin (ut. What is the
equation for the oscillations depicted by curve 2?
6.3. Two material particles of equal mass are performing
harmonic oscillations whose graphs are shown in the fig­
ure. What oscillation has a higher energy?
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6.4. As a result of adding two mutually pcrpendieular
oscillations of equal frequency, tho motion of an object
occurs along an elli pse; in one ease the Illation is clock­
wise, while ill the ot.her it is counterclockwise. Write the

Ax

Fig. 6.2 Fig. 6.4

Ay

Fig. 6.3

equations of motion along each coordinate axis, assumi ng
that the initial phase along the x axis is zero.
6.5. Two rnutually perpendicular oscillations are added.
In one case the gra phs representing these oscillations are
those shown in Figure (a) and in the other, those shown in
Figure (b). In what respect do the resultant oscillations
di fIer?
6.6. Suppose that the addition of two mutually perpendic­
ular oscillations in which a mal.eri al particle part.ici­
pates results in an ellipse, with the direction of motion
indicated by the arrow in the figure. The equation of 1110-'

t ion a10 ng t he x axis can be \VI' itten i n the for m x =:
Al sin wt and that along the y axis, in the Iorrn y :-::=

A 2 sin (wt + (p). Determine tho condition that (P must
meet.
6.7. Two mutually porpend icular osci l lat.ions obey the
laws

x ~ A 1 sin (JJ 1tand y == A 2 sin ((I) 2t +. (p).

The addition of these two osci llutions leads to the Lissa­
jous figure shown in the d raw i ng accompanyi ng the Pl'o1>-
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lcm. Del ermine the relat.ionshi p between (1)1 and W 2 and
the initial phase 'P if the ftgure is traversed in the direc­
tion shown hy the arrows.

a,

Fig. 6.7

( ~)

Fig. 6.5

x,y

t"'ig. 6.6 Fig. 6.8

6.8. Two mutually perpendicular oscillations arc per­
formed according to the laws

Determine t.he relationship between (').1 and (J)2 using tho
Lissajous figure shown in the drawing accompanying the
problem.
6.9. A material particle oscillates according to the hCll"JIIOIl­

ic. law, At which of the t\VO moments, 1 or 2, is the k inet­
ic energy higher and in which, tho potential energy"
At which mornen t is the acceleration of the particle at
its maximum (in absolute value)?
6.10. Two loads whose masses are m., and m 2 arc suspend­
ed hy springs im.; > m 2 ) . When the loads were attached
to the unloaded springs, i L was found that the elongations
of the springs were the same. Which of the two loads oscil-
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lutes with a greater osri l lat ion perior] and which of t.he
two loads possesses a higher energy (provided that the
oscil lution amplitudes H"O equal}? The spri ngs arc ('011­

sid~J'(\d flln~slcs.~.

(~2 /

°l~t
:Fig. 6.9
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rn,

)i'ig. 6.10

6.11. A chemical test tube is hal anced by a load at its
bot.torn so that it does noL tip when submurged in a liquid
(the cross-sectional area of the tube is A.';). After submerg­
ing to a certain depth, the tube begins to oscillate about
its posi t.ion of cquilihrium. The Lube, whose In ass logcth­
er wi t.h the Blass of the load is m, is in the state of equi­
libri um in a liquid with a density p when its bottom is be­
low tho level of liquid by a d ista nco l. Determine the oscil­
lation period of the tube assuming that the viscosity of
the liquid is nil.
6.12. One way to measure the mass of an object in a space
station at zero graviLy is to uso a device schemat.icall y

~
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Fig. 6.11 li'ig. 6.12

shown ill the figure. The principle of operation of this
device is as Iollows, First the austronaut measures the
oscillation frequency of an elastic system of known mass.
Then tho unknown mass is added to this system and a new
measurement of the oscillation frequency is l.aken. Tlow
can one drterrnine the unknown mass Irorn the two mea­
sured values of frequency?
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6.13. Two sim ple pendulums having equal masses hut
different lengths are in oscillatory motion wit h the same
angular amplitudes. Which of the t\VO pendulums has H

higher OSf illn t.io11 onergy?
6.14. Two pendulums, a physical OHO ill the Iorrn of a
homogeneous rod and a simple one, of equal mass and

Fig. 6.13

\
\

\

Flg.'..6.14 Fig. 6.t5

length are in oscillatory motion wit.h t.he same angular
amplitudes. Which of the t\VO penrl ulums has a higher o~­

ci ll ation energy?
fl.15. An axis passes through a disk of radius Rand nH\SS

In at a distance llc from the disk's center'. What wi l l he
the period of oscillations of the disk about this axis
(which is fixed)?
6.16. Consider a physical pendulum that is a homogeneous
rod of length I. At what distance lie from the center of

Fig. 6.16

Fig. 6.17

Fig. 6.18

gravi ty of the rorl must the point of suspension lie for t.he
oscillation period to he rnax irnal?
6.17. A. force acting on a material parLiclo varies accord­
ing to the harmonic law

F === Fo sin tot,
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At t.ime t === 0 the veloci ty o j s zero. ] Iow do the vcloci ty
and position of the particle vary with Limo?
6.18. A force acting on a material particle varies ac­
cordi ng to the harmonic law

F == Fo cos wt.

At. t.imo t == 0 l he velocity v is zero. How do the ve­
locity and position of the part.iclo vary with t ime?
6.19. Tho t.ime dependence of tho ampli tudo of damped
osci ll at.ions is presented in the figures on a semilogarith­
mic scale, that is, tho t.ime is laid off OIl the horizontal
axis on a lineae scale and the ampli tude, on the vertical
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axis on a logari thmic scale. Construct the time dopen­
dence of the energy of these oscillations using the semi logu­
rithm ic scale. Set the initial values of the logarithms of
the arnplitude and energy of the oscillations equal.
6.20. Suppose that certain damped oscillations are re­
presented in polar coordinates. Depict these oscillations in
Cartesian coordinates with the phase of the oscillations
Iai d off on l he horizontal axis all d the displacement, on
the vertical axis, assuming that the ratio of the sequen­
tial am pli tudes of osci ll at.io ns and the initial phase remain
unchanged. Find the logarithmic decrerneut of tho oscil­
lations.
6.21. Suppose that a pendulum osci l lut cs in a viscous me­
diurn , The viscosity of LIte med i um and the IO:lSS and
length of Lho pendulum are such that the oscillations are
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aperiodic. Tho pendulum is deflected Irorn t.he position
of equil i hr ium and released. How will tho absolute value
of tho the pend ul um ' S veloci t y vary wi Lh Lime: will it
increase couti nuousl y, decrease cont inuousl y , pass
through a maximum. or pass through a minimum?
6.22. -A load suspended by a spr i ng in a viscous rnerl i um
performs dumped osci llatlons. How should one change the
length of the spring (preserving HIl tho charact.cr ist.ics of
the spring, LB. the thickness of the wire , the density of
the turns, etc.) so that the osci llal.ious become apcriod ic?
The mass of the spring is assumed to be negligible COJll­

pared 1.0 tho JDaSS of the load.
(-).23. An osci llntory circuit ronsisls 4')f a capaci tunce C,
au induc l.ance 1." and a resistance R . Dnm pod oscilluticus
set in in this r ircuil., (1) IIow should one change t.ho dis-­
tance between the plates of tho capar i Lor for the discharge ill
the circui t to bOCOII10 aperiodic? (2) How should one
change the capacitance and inductance (with the resistance
remaining unchanged) for the damping in the contour lo
d imi 11 ish provided that the na tural frequency of free os­
ci llat ions rem ains the sa me? How wil l this change the
frequency of dan} pod oscillations'? (3) How wil l the Ioga­
ri l hrnic decrement of the oscillations change i I the re­
sist auco and i urlurl nuco chango hy the SanHJ Iactor?
(i.2t!,. r!\\TO spheres of the same di.uuel.cr hut or diHel'PlI1
musses are suspended hy strings or equal ·h-lIgl.h. If t.he

R

Fig. 6.24 Fig. 6.25

spheres arc deflected front their positions of eq ui li briuru,
which of the t\VO wi ll have a greater oscillation period
and 'vhich wil l have a greater logar i thm ic decremen t if
their osci llnt inns OCCll)' jil a real J~·ledil1nl with viscosity"
6.25. A "dnnci ng spiral" i~ somcti rucs dcmonst rntorl at
~ectures. A spr~ng fixed at i ts upper end is suhmerged by
Its lower end Into mercury. Voltage supplied hy a DC
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source is applied to the upper end and the mcrcurv.
When current flows in the spring, the rings of tho spiting
lend to druw together, the spring gets shortor, and tho
lower end moves out of tho mercury. The current ceases,
and the lower end is again submerged in the mercury. The
process repeats itself. What oscillations does the spring
perform in the process: free, forced, damped, or self-oscil­
lations?
6.26. Which of tho t\VO diagrams, Figure (a) or Figure
(b), represents the dependence of the amplituda of displace­
ments in forced oscillations on the frequency of the driv­
ing force and which represents the frequeney dependence

((11

A

UJ

Fig. 6.26 Fig. 6.29

of the votocit.y.un pli tudc? IJJ what purumetor dctcrruiui ng
the osci llat.iou conditions does cacti. curve represented ill
Figures (a) and (1)) di Iler? What parameters del.ermi uc the
intersection of each curve wit.h the vertical axis in Figure
(a) and the position of the maximum?
6.27. How will the displacement amplitude at co =--= 0
that is A 0' the maximal amplitude A In' and the resonance
frequency ffircs vary if tho resistance of the medi urn in
which the oscillations occur decreases provided that all
the other parameters that determine the forced oscilla­
tions rem ai n unchanged?
6.28. Tho curve depicting the dependence of the nrn pl i­
tude of forced oscillations on the frequency of tho dri vi ng
force in a medium with no resistance tends to inlini t y as
co == (1)0. Why is this situation meaningless not only from
the physical standpoint but also from tho mathematical
standpoint? How docs a system oscillate in a medium
that has practically no resistance?
6.29. Two forced oscillations with the same natural fre­
quencies have amplitudes that differ by a factor of 2 for
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all values of the frequency of the driving force. In what
parameter, among the amplitude of the driving force,
the mass of the oscillating object, the elasticity coeffi­
cient, and the resistance of the medium, do these systems
differ? It is assumed that these systems may differ only
in one parameter.
6.30. Waves on the surface of water in the form of paral­
101 lines advance on a wall with an aperture much narrow­
er than the wavelength. What will be the shape of the
waves propagating on the surface.... jbehind the wall (and
aperture)?
6.31. In the standing waves that form as a result of re­
flection of waves from an obstacle the ratio of the ampli-

A tude at a crest to the
20 1· d d .amp itu e at a no e IS

6. What fraction of the
10 energy passes past the

obstacle?
6.32. A wave is propa­
gating in a medium with
damping. The distance
from the source of oscil­
lations (in units of the
wavelength) is laid off
on the horizontal axis

t· ---"-~-·--·-·j-_·--t-·-~----~/-.t and the cornmon loga-

Fig. 6.32 rithrn of the oscillation
amplitude is laid off

on the vertical axis. Using the graph shown in the fig­
ure accompanying the problem, write a formula that will
link the amplitude with the distance.
6.33. The formula that expresses the speed of sound in a
gas can be written in the following form:

c= y yp/p. (6.33.1)

Here 'Y is the specific heat ratio (the ratio of the specific
heat capacity of the gas at constant pressure to the spe­
cific heat capacity at constant volume), p is the pressure of
the gas, and p is the density of the gas. Using this formu­
la as a basis, can we stipulate that upon isothermal change
of the state the speed of sound in the gas grows with pres­
sure?
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6 .:i4. Tho figure demonstrates the temperal.uro depourlenro
of the speed of sound in neon and water vapor Oil the
log-log scale. Which straight line corresponds to the light­
er of the gases?
6.35. The dependence of the frequency of oscillations reg­
istered by a receiver when the receiver and the source of
sound approach each other depends on whether the source
moves and the receiver is fixed, or whether the source is
fixed and the receiver is in motion. The curves in the fig­
ure represent the dependence of the ratio of the recei ved
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Fig. 6.35

frequency of oscillations to the Irequeucy entitled hy the
source on the ratio of the rate of relative motion to the
velocity of sound. Which of the two curves corresponds
to a moving source and which, to a mo vi ng recei ver?
The medium where the propagation of sound takes place
(air or water) is assumed fixed.
6.36. An observer standing at the bed of a railroad hears
the whistle of the locomotive of the train that rushes past
him. When the train is approaching the observer, the fre­
quency of the whistle sound is VI' while when it has passed
the observer, the frequency is V2. Determine the speed
of the train and find the whistle frequency when the ob­
server moves together with the train. The speed of sound
is assumed to be known.
6.37. Two observers stand at different distances from tho
bed of a railroad. When a train passes them, each hears
how the frequency of the train whistle changes, with the
change occurring along curve 1 for one observer and along
curve 2 for the other. Which of the two observers is st.anrl­
ing closer to the roadbed?
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6.:38. f\ SOIU'CO of sound whoso frequcllcy is \70 is moving
with a speed v. 'rho waves travel to a fixed obstacle, are
reflected by the obstacle, and are registed by a receiv~r'
that moves together wi th the source. What Ireq UCIJCY IS

registed by the receiver if tho speed of sound wav~s is c'?
6.39. A source of oscillations S' is fixed to the riverbed
of a river whoso waters flow with a velocity u. Up and
down the stream there are fixed (also to the river bed)

-~v
~

Fig. 6.37 l~ig. 6.39

t\VO rocoi verx, 111 and R 2 (see the figure). The source gen­
erales osci ll nl.ions whose frequency is \70' What Ircquencics
do receivers R 1 and 1/.2 register?
().40. Two hoats are floating on a pond in the same direc­
tion and with the same speed v. Each boat sends,
throug-h the water, a signal to the other. The frequencies
Vo of tho generated signals arc the same. Will the ti rnes

-Fig. 6.40 Fig. 6.41

it takes the signals to travel from one boat to tho other he
the same? Are the wavelengths the same? Are the Ire­
quencies recei vcd by the boats the same?
6.41. Au underground explosion at a point A generates
vibrations. Seismographs that are capable of measuring
lougi t ud i nul and transvorso wa yes separate] yare placed
at another point fl. Tho time interval bet ween tho arri val
of longitudinal and transverse waves is measured. How,
knowing the velocities of propagation of Iougi tudi nal
and transverse waves and the time difference between
arri val, La deterrni no t.he distance ..'; between pain ts .11
and B?
6.42. A sound wave Lravels in air and falls on the inter­
face between air and water at an angle (Xl. At what angle
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a~ will the wave propagate in the medium: grcnl.er lha n
at or smul lor than a i ?
(") .43. Thoro are runny documen Led cases when a n ex plo­
xion at a point -,1 wi ll be heard aL a point B that is locat­
ed far nway Irom A while ill a certain region, known as
the zone of silence, located .rnuch closer to ...1 than to Ii
the explosion j s not heard. Arnong the reasons for this is
tho deflection of sound waves caused hy the presence of a
vertical temperature gradient ill the al.mopshcrc. How

~---I ""~l

l?:-- -_.~------------ .. _--_ .. _.- ~A I !'ir',e ot I B
! sl.ll'nc~ I

f'ig. 6.4:l

should the air temporature change with altitude Ior the
direction of propagation of sound waves to be as shown
ill the figure?
(j.4~. At a depth h J below ground Jevel there is a pocket
uf water of depth "-2' WhHL t.ype of nrt.i llcia l scisnri«
waves, loug i tud iuul OJ" Lrn ns verxu, is Ileodpd to rneusurc
the depth of the water pocket?
H.45. An airlane is ill supersonic flight at all altitude h.
l\t what srn al lest distance a (along tho horizontal) from

~, A

I <,
I ' <,
I a <,

Fig. 6.45

the observer on tho ground is there (l point from whic.h
the sound emitted by the airplane motors travels to the ob­
server faster than from point i1 that is directly above the
observer?
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7. Al Lernating Current

7.1. Using a Rogowski loop (see Problem 5.30), one call
measure the e ffect.ive value I eff of an alteruat.ing current
flowing in a conductor. The loop has a rectangular cross
section with N turns. The dimensions and the position of
the loop are shown in the figure. Determine the effective
emf generated in the loop by the alternating current.
7.2. The figure shows the vector diagram of reactances
and resistances in an AC circui t. Construct a simi lar dia-

Fig. 7.1 Fig. 7.2

gra Hi for a circui t in which the current frequency is doubled
and the emf amplitude is the same, and determine how
the current will change as a result of this.
7.3. What is the frequency dependence of the current, of
tho phase shift between voltage and current, and of the
consumed power for a circuit consisting of a resistance
and an inductance connected in series provided that the
emf ampli tude remains constant?
7.4.. What is the frequency dependence of the current, of
the phase shift between current and voltage, and of the
consumed power for a circui t consisting of a resistance
and a capacitance connected in series provided that the
emf am pliLude remains constant?
7.5. A circuit (Figure (a)) co nt ai ns all alteruatiug emf', a
resistance, and a reactive element (only a capacitance
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or only an iuduct.ance}. What is this element if the t.ime
dependences of the current in the circuit and the emf of
the source are those as shown in Figura (b)?
7.H. f\.rc the re~dings. of the ammeter A3 equal to the
SUHl of the readings of the ammeters A.1 and A2 for the
cases depicted in Figures (a) and (b)?

R

~I ;J
ReactLvP elemsnt

(a)

E,I
vs

i::

~ b)

Fig. 7.5 Fig. 7.7

R R

2V'~o--_3
(a) (b)

Fig. 7.6

7.7. Are the readings of the voltmeter VB equal to the
sum of the readings of the voltmeters Vi and V2 for the
cases depicted in Figures (a) and (b)?
7.8. The current flowing through the resistance in an AC
circuit shown in Figure (a), where a resistance R, a ca­
pacitance C, and an inductance L are connected in series,
is I == ~/R. What will be the current in the AC circuit
when the inductance and the capacitance connected in
parallel are connected in series with the resistance (Fig­
ure (b))?
7 .9. The power in an AC circui t varies with time accord­
i ng to the curve in the figure. I-Iow, knowing the maxi­
mal and mi ni rna l values of the power, to determine the
numerical value of the phase shift between voltage and
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current? What is tho period of variation or the power:'
7.10. To demagnetize watches that have been accidental­
Jy ruHgIICl.i zed ~ they are placed inside a solenoid conuor l.ed
to (111 AC source. 'fhe watc hox are then slowly romo ved
Irorn the so leunid . ]~~xplain why the watches become do­
magnetized as a result of such rnani pulations,

(u )

4

L
(h)

Fig. 7.8 Fi~. 7. t t

pr~~.o t

Pmtn

Fig. 7.9

7.11. A full-wave recti ncr (the circui l is shown in the fig­
ure) rectifies the current that flows continuously in one
direction. Sketch the Lime dependence of the current, ig­
noring all losses, and, assuming that the load of the
rectifier constitutes a resistance, calculate tho average
value of the current. If the roctifter is loaded to a primary
wind ing of a transformer, is a constant emf generated in
the secondary winding?
7.12. In the circuit shown in the Figure, a capacitor of
capacitance C is connected in parallel wi l.h a resistor R.
I-Iow will this influence the time dependence of the C.Uf­

rent.?
7.13. Two semic.onductor diodes in opposition to each
other in series are connected to the pri mary windi ng of a
transformer. Drnw the osci llogrnms of tho current iri the
primary winding and of the emf generated in the seconda­
ry winding.
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7.1-1. Two YH('UUHl diorles in opposit ion to each ot hor in
parallel are connected tot he primary winding of a trans­
Io rrucr. Tho am pl i t urle or t hc emf applied to the priJnary

Fig. 7.12

0-----

Fig. 7.14

Fig. 7.13

winding exceeds considerably the voltage at which the
diodes go into the saturation mode. Draw the osci llograms
of the current in the primary winding and of tho emf gen­
erated in the secondary winding.

8. Optics
8.1. At what distance 11 Irorn a biconvex lens must we
place an object for the distance between the object and
tho real image to be minimal?
8.2. Two biconvex lenses a and b wi t.h the same radii of
curvature are manufactured Irorn glass samples with differ­
ent refractive indices. How should we employ the graphs
that represent the dependence of the distance /2 between
a lens and the image of an object on the distance 11 bc­
tween the lens and the object in order to determine the
ratio of the refractive indices?
8.3. When taking a picture of a group of objects that are
positioned at different distances from the camera, one
must allow for the so-called depth of focus, or the limits
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of the greatest and the smallest distance between which
the image is sharp for a gi ven focus setting of the camera.
\Vhy is the depth of focus the greater the smaller the
II pert.ure setting?
8.4. A pinhole carnera consists of a rectangular (hollow)
glass prism whose front base and lateral faces are black­
ened and whose back base is covered with a photographic
plate. A small circular section of the front base is left

Fig. 8.1 Fig. 8.5

Fig. 8.4

Y:

Fig. _8.6

unhlackened , and through this "pinhole" the light enters
the camera. The refractive index of the glass is n, the dis­
tance from the object to the camera is at, and the length
of the camera is a 2 • Determine the ratio of the size of the
image, Y2' to the size of the object, Yl' assuming that Yl~
al·
8.5. Light falls on an end face of a glass rod at an angle
a: What is the smallest refractive index that the glass may
have so that the light after entering the rod cannot leave
it through a la teral face irrespective of the values of a?
8.6. At what angle to each other must t\VO flat mirrors
be positioned for a beam of light incident on one of the
mirrors at an arbitrary angle in a plane that is perpendic­
ular to the mirror surface to be reflected from both mir­
rors in such a manner that the refracted beam is parallel
to the incident bean)? Is a prism suitable for this purpose?
8.7. An electric, bulb is hanging above the center of a
round table whose radius is R. At what height h must it
be hung for the intensity of illumination at the edge of
the table to be maximal?

96



8.8. A beam of light propagates through a medium 1 and
falls onto another medium, 2, at an angle aI- After that
it propagates in medium 2 at an angle a 2 - The light's
wavelength ill medium 1 is AI- What wavelength has the
light in medium 2?
8.9. T,vo identical coherent sources of light, 8 1 and 8 2 ,

separated by a distance a produce an interference pattern
on a screen. The wavelength of the monochromatic light

Fig. 8.7 Fig. 8.8 Fig. 8.9

emitted by the sources is A. Determine the maximal num­
ber of interference fringes that can be observed assuming
that the screen is infini tely large.
8.10. In an experiment that involves the observation of
interference of light via two Fresnel mirrors, the source of
light is posi tioned symmetrically in relation to both mir­
rors at a distance l from the boundary between them. How
does the distance between the first interference fringes on
a screen that is positioned far from the mirrors depend on
the angle e between the mirrors?
8.11. When there is interference of light waves emitted
by two coherent sources, the geometric locus of points
with the same difference in the phases of tho oscillations
that arrive at that point from the two sources constitutes
a surface whose sections with the plane of the drawing are
the curves ab and a' b' shown in the figure. What is this
surface?
8.12. A transparent dielectric is deposited in the form
of "a thin film on two substrates made of different dielec­
trics. Both films form geometrically identical wedge-like
layers. The refractive index of the material of the film
is n and those of the substrates are n1 and n2 , with n1 <
n < n2 • Suppose that two light beams of similar spec­
tral composition fallon the two systems at the same
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angle. In what respects do the resulting interference pat­
terns differ?
8.13. An air wedge is i llurniuated by monochromatic
light. The distance between the rusult.i ng interference
fringes is a. flow will the distance between the iuterfer­
ence fringes change if the space between the plates that
constitutes the wedge is filled with a transparent liquid?

n-----,n
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Fig. 8.11

Fig. 8.12

Fig. 8.14

8.14. A plano-convex lens with a radius of curvature
R1 is lying on a reflecting cylindrical surface whose radi­
us of curvature is R 2• The lens is illuminated from above.
What shape do the interference fringes have?
8.15. A plano-convex segment of a glass cylinder whose
curvature radius is R is lying on a flat plate. A paral­
lel beam of light falls on this segment from above. What
shape will the interference fringes have and how will the
distance between the fringes change as we move away Irom
the straight line along which the segment touches the
plate?
8.16. During observation of Newton rings, a small par­
ticle of unknown thickness a got between the lens and
the plate. How can one determine the wavelength of
monochromatic light incident from above on the lens
using only graphical considerations? What scales along
the vertical and horizontal axes are preferable?
8.17. On a reflecting substrate there lies a transparent
plane-parallel plate that forms an angle (X with the sub­
strate. Thus a wedge-like film of air is formed. The sub­
strate has a triangular ledge whose cross section is an iso­
sceles triangle with angles e at its base. The plate is illu­
minated with monochromatic light from above. As­
suming that the angles a and eare small, sketch the posi-
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tions of the interference fringes. The size of the wavelength
is shown in the figure.
8.18. In the observation of the i utcrference pattern in an
air wedge (Figure (a)) there sOlnetimes appear interference
fringes with distortions caused by the presence of a
ledge or a dent on the substrate. Which of the two inter-

(Q)

(C)

Fig. 8.18

~ II I ~ '-----------------'
Fig. 8.17

ference patterns in Figures (b) and (c) corresponds to
which defect?
8.19. Light from a distant source falls on a screen with a .
round hole. At a certain distance from this screen an-

z, •
Fig. 8.19 Fig. 8.20

other screen is placed, and it is on this screen that the dif­
fraction pattern is observed. How will the intensity of il­
lumination at the center of the second screen change if
the distance between the screens is gradually increased,
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that is, does the intensity of Illumination remain constant
or does it monotonically decrease or does it vary period­
ically?
8.20. Light from a distant monochromatic source, which
can be considered point-like, is incident on a small
round opaque disk or sphere. A screen is positioned at a
certain distance z from the object. This distance, z,
is great if compared with the diameter of the object, so
that the object covers onl y several Fresnel zones into
which the plane wave can he partitioned. Can it be pos­
sible that under such conditions the geometric shadow on
on the screen contains a bright spot in its center?
8.21. What maxima in the spectrum obtained through
the use of a diffraction grating correspond to the line

I

Fig. 8.21

with a longer wavelength and what maxima, to the line
with a shorter wavelength? What approximately is the
ratio of these wavelengths?
8.22. In a spectrum obtained through the use of a diffrac­
tion grating, a spectral line is obtained in the first order
at an angle CPl. Determine the highest order of the spec­
trum in which this line can be observed by means of the
same diffraction grating if the light falls on the grating
at right angles to the grating's surface.
8.23. Suppose the wavelength of a spectral line is mea­
sured via two diffraction gratings. The spectral maxima in
the zeroth and first orders have the shape depicted in the
figures. The scales used in both figures are the same.
Which grating has a larger period and which, a higher re­
solving power? Estimate approximately the resolving
power of each grating assuming that the natural line
width and the Doppler line width are considerably small­
er than the one obtained in experiments.
8.24. Suppose there are two diffraction gratings with spac­
ings C1 and C2 and a total number of lines N l and N 2 ,

respectively. Here C1 < C2 and N l > N 2 , but the product
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eN is the same for both gratings. Which of the two grat­
ings has a greater maximal resolving power if the same
spectral line is observed at normal incidence of light on
the gratings?
8.25. A parallel beam of light falls at an angle e on a flat
diffraction grating with a spacing d. Determine the fun­
damental grating c.ondition for the wavelength A, the
maximum order of the spectrum in which the appropri­
ate spectral line can be observed, the maximum wavelength
for which a line in the spectrum can be resolved, and the
maximum dispersive power of tho grating?
8.26. A phonograph record can be used as a reflecting
diffraction grating. To obtain a clear diffraction pattern,
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Fig. 8.23 Fig. 8.26

one must direct the light at an angle that is as close to the
grating angle to the surface of the record as possible.
Why?
8.27. What minimal value can the Brewster angle have
when light falls from air onto the surface of any dielec-
tric?
8.28. When light is incident on a transparent dielectric
at the Brewster angle (tan a == n), the reflected light
proves to be completely polarized. Is the refracted light
also completely polarized in this case?
8.29. Natural nonpolarized light is incident on a double­
refracting crystal. The normals to the ordinary wave (0)
and the extraordinary wave (e) are directed as shown in
the figure, Find the ratio of the wavelengths of these

waves.
8.30. A Tvshaped pipe with blackened walls is filled
with a turbid medium. Light falls onto one end of the
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pipe in the direction designated by 1. As a result of scat­
tering, a fraction of the light emerges from the pipe in
the direction designated by 2. Prove that this fraction is

Fig. 8.29 Fig. 8.30

<b)

Fig. 8.31

Fig. 8.32

polarized and determine the direction in which the elec­
tric field vector oscillates in this fraction.
8.31. Suppose that a ray of light falls on a flat boundary
of a douhle-refracting crystal. In one case the crystal has
been cut in such a manner that the wave surfaces of the
ordinary and extraordinary rays have the form depicted

in Figure (a), while in
~ the other case it has

been cut in such a man­
ner that the correspond­
ing wave surfaces have
the form shown in Fig-
ure (b). How is the optic
axis of the crystal direct­
ed in each case and is
the crystal positive or
negative?

8.32. Natural light with intensity 1 0 passes through two
Nicol prisms whose transmission planes are at an angle
e to each other. After the light has passed through the
second prism, it falls on a mirror, is reflected by the mir­
ror, and passes through the two Nicol prisms once more.
What is the intensity I of the light that has travelled this
path?
8.33. Polarized light passes through a transparent sub­
stance that is placed in a longitudinal magnetic field.
The result is the so-called Faraday effect (rotation of the
polarization plane in a magnetic field). After passing



through the substance (and magnetic field), the light is
reflected by a mirror and travels in the opposite direction,
whereby it travels through the magnetic field once more
but in the opposite direction. Will the angle of rotation

LS:71Imllllllllnnnml-~r-I­
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Fig. 8.33

of the polarization plane be doubled or will it cancel it­
self out?
8.34. When an electric field is applied to a capacitor that
is submerged in nitrobenzene, artificial anisotropy
emerges in the medium and the nitrobenzene behaves like a

~
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Fig. 8.34

double-refracting crystal in which the reftactive index
of the extraordinary ray, ne, is greater than that of the
ordinary wave, no. The phenomenon, known as the Kerr
effect, can be observed via two crossed Nicol prisms.
Does the observed pattern change if the direction of the
electric field is reversed?
8.35. When a source of light moves toward the observer,
the optical Doppler effect manifests itself. The curves in
the figure depict the dependence of the perceptible fre­
quency of the light on the speed of the source of light,
with one curve corresponding to the results predicted by
classical theory and the other.. to the results predicted by
the theory of relativity. The ratio of the speed of the source
to the speed of light is laid off on the horizontal axis,
while the ratio of the perceptible frequency to the fre­
quency of the light emitted by the source (i .e. of a fixed
source) is laid off on the vert.ical axis. Which curve cor­
responds to which theory?
8.36. To determine the directional velocity of the ions
that move in an electric field in a plasma, one commonly
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measures the wavelength of the waves emitted by the ex·
cited ions. The measurements are carried out in two direc­
tions, counter to the direction of motion of the ions and
"in pursuit" of the ions. The measured wavelengths are
Al and A2 , respectively. Can we employ the classical for­
mulas of the Doppler effect or must we use the relativis­
tic formulas? The ion velocities range from 104 to
105 suls.
8.37. The figure depicts the same spectral line emitted
by a gas at different temperatures. The wavelength is
laid off on the horizontal axis, while the ratio of the inten-
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sity at a given wavelength to the maximal intensity at a
given temperature is laid off on the vertical axis. Which
curve corresponds to a higher temperature?
8.38. An electric current flows through a rarefied gas in
a tube 1 (Figure (a». The radiation emitted by the excit­
ed positive ions is analyzed in the transverse direction
by a spectrograph 2. The wavelength distribution of the
intensity of the radiation for one spectral line is shown ill
Figure (b). Can analyzing this distribution yield the tem­
perature of the ions?
8.39. Two objects having the same shape and size but
different absorption coefficients (immisivities) are heat­
ed to the same temperature and placed in a vacuum.
As a result of emission of radiation the objects cool off.
The curves in the figure show the change in temperat ure
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in the process of cooling. The cooling-off time from the
moment the objects were placed in the vacuum is laid off
on the horizontal axis, while the temperature of the ob­
jects is laid off on the vertical axis. Which curve character-

B~[_~O

(a)

(b)

Fig. 8.38

T

Fig. 8.39

izes the object with a higher absorption coefficient and
which, wi th a lower absorption coefficient?
8.40. An ideal gas is placed inside a closed isolated vol­
ume, The concentration of the molecules of the gas is
n. At what temperature will the volume density of the
kinetic energy of translational molecular motion in the
gas be equal to the volume density of the energy of black­
body (electromagnetic) radiation? Illustrate the result
with numerical examples.
8.41. Two separate segments of equal area are isolated
in the energy distribution of blackbody radi ation. Are

Fig. 8.41 Fig. 8.42

the emissive powers over the respective wavelength in­
tervals the same? What about the number of emitted pho­
tons in each segment?
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8.42. A student has sketched the curves representing the
energy distribution in the emission spectrum of black­
body radiation for two temperatures as shown in the figure.
What mistake did the student make?
8.43. Determine the volume density of the energy of
blackbody radiation over the frequency range from "1
to "2. The radiation function is laid off on the vertical
axis.
8.44. The figure shows two curves: one corresponding to
the energy distribution of blackbody radiation at a cer­
tain temperature obtained from theoreticaljassumptlons

o

Fig. 8.43 :Fig. 8.44

(curve 1), and the other corresponding to the energy dis­
lribution of the rarliation emitted by a certain object
that has been heated to the same temperature (curve 2).
Why can we be sure that the experimental curve does not
gi ve a true picture?
8.45. Curve 1 in the figure depicts the energy distribu­
tion in the emission spectrum of a black body. Curve 2
represents, in schematic form, the energy distribution in
the emission spectrum of a certain object that has been
heated to the same temperature as the black body. Curve
2 consists of three segments: on the segments ranging
from A == 0 to Al and from A2 to A == 00 all ordinates of
curve 2 are one-half the respective ordinates of curve 1,
while on the segment from A1 to A2 the value of eA. re­
mains constant. Sketch the distribution of the absorption
coefficient (immisivity) over the wavelengths for the ob­
ject in question.
8.46. The radiation emitted by a black body can be re­
presented either by the energy distribution over the wave­
lengths (Figure (a)) or hy the energy distribution over the
frequencies (Figure (b)). In the first case the wavelength
at which the black body emits a maximum amount of ra­
diation is Anp while in the second the frequency at which
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the black body emits maximum amount of radiation is
"m· Is it true that at a fixed temperature the quantities
Aln and "m are related through the formula "m = clAm?
8.47. Represent the volume density of the energy of
blackbody radiation in the form of a distribution function
for the number of quanta in the energy of one quantum.

E}..,e"

o
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Wm W

Fig. 8.51

(b)

Fig. 8.46

8.48. How does the volurne specific heat capacity of
the vacuum depend on temperature?
8.49. According to the electromagnetic theory of light,
the light incident on a surface always exerts a pressure
on that surface equal to

ti> £(1+R), (8.49.1)
c

where I is tho Intensity of the light, that is, the light
energy arriving every second at a unit area of the surface,
and R is the reflection coefficient. Can the origin of this
pressure be explained in the same manner as is done in
the kinetic theory of gases, where the pressure of a gas on
the wall of a vessel is interpreted as transfer of momentum
from each particle to the wall?
8.50. Are there any practical rneans by which one can
obtain a hearn of parallel rays of light in the mathematic­
al sense (using the terminology of wave optics, a stream
of strictly plane waves)"? .



8.51. The energy distribution function for photoelectrons
has the form shown in the figure. What determines the
maximal energy of the photoelectrons?
8.52. In the Lukirskii-Prilezhaev experiments (also con­
ducted independently by R. A. Millikan), the dependence
of the stopping potential Ust op , that is, the potential
needed to stop the photocurrent in a photocell and the as­
sociated electric circuit, on the frequency of the light in­
cident on the surface of the photocell is depicted by straight
lines. How to find the Planck constant knowing the

Ustop
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Fig. 8.52 Fig. 8.53

slope of these straight lines? In what respect do the para­
meters that characterize these two straight lines differ?
8.53. Two electrodes placed in a vacuum at a certain dis­
tance from each other are connected electrically by a re­
sistor. One electrode is illuminated with light from a
source whose spectrum contains radiation with a wave­
length 'A, that satisfies the condi tion

he/A> p,

where p is the work function of electrons leaving the me­
tal of the illuminated electrode. Will there be any current
in this circuit?
8.54. A. photocathode can be illuminated by the light
from two sources, each of which emits monochromatic ra­
diation. The sources are positioned at equal distances
from the photocathode. The dependence of the photocur­
rent on the voltage between the cathode and the anode is
depicted by curve 1 for one source and by curve 2 for the
other. In what respect no these"sources differ?
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8.55. Two photocathodes are Illuminated by the iight
emitted by a single source. The dependence of the photo­
current on the voltage between the cathode and the anode
is depicted by curve 1 for one cathode and by curve 2

Fig. 8.54

u
Fig. 8.55

for the other? What photocathode has a higher work func­
tion?
8.56. The stopping potential applied between a photocath­
ode and the respective anode is such that the fastest
photoelectrons can fly only one-half of the distance be­
tween the cathode and the anode. Will the electrons be able
to reach the anode if the distance between the cathode and
the anode is reduced by half but the voltage is kept con­
stant?
8.57. In one case of Compton scattering a photon flies at
an angle e to the initial direction of the incident photons,

'/2

Fig. 8.57

and in other case it flies at an angle 82 • In which case is
the wavelength of the radiation after scattering greater,
and in which case does the electron participating in the
interaction receive a greater portion of energy?

9. Atomic and Nuclear Physics
9.1. A proton that has flown over a great distance hits
a proton that is at rest. The impact parameter is zero,
that is, the velocity of the incident proton is directed
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along the straight line connecting the centers of the pro­
tons. The mass of the proton is known, m, aud the ini­
tial velocity of the incident proton is Vo' flow close will
the incidence proton get to the fixed proton?

v
---~----~---

Fig. 9.1

Fig. 9.3
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9.2. Suppose that the energy required to ionize a hydro­
gen atom is WI' Must the electron, the hydrogen ion, and
the helium ion have the same initial kinetic energies

for the hydrogen atom to be-
come ionized?
9.3. The system of quantum
levels of an atom is assumed
to be like the one depicted
in the figure. How will each
of the energy components of
the electron (the kinetic ener­
gy and the potential energy)
vary if the electron moves from a
lower level to a higher level?
9.4. The quantum levels of
atoms of hydrogen and deu­

toriurn are only approxirnately the sante (the difference
between the two systems of levels is exaggerated in the

-----n:c=5
-----11=4

n=3

n:- oo
-------------~n~ oDn=5

n:::4
n=3

-----n=2
n=2

-----n=1
nrt

Fig. 9.4

figure). Which system of levels belongs to which atom?
What is the reason for this discrepancy?
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9.5. Every other spectral line in one of the spectral se­
ries of an ionized helium atom (the Pickering series)
closely resembles a line in the Balmer series for hydrogen,
What is the principal quanturn number of the level to
which the electrons transfer when these lines are emitted?

I A.
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Fig. 9.5

Why don't the lines coincide exactly? What is the mean­
ing of the lines that lie in between the lines of the Bal­
mer series?
9.6. Four lines in the Balmer series lie in the visible
part of the spectrum. What must the principal quantum
number of the electron level in a doubly ionized Iithium
atom be for the lines emitted when electrons go over to
this level to lie close to the lines of the Balmer series?
What is the overall number of lines lying in this wave­
length region?
9.7. An electron moving in an atom is acted upon by the
Coulomb force of attraction generated by the nucleus.
Can an external electric field be created that is capable of
neutralizing the Coulomb Iorce and ionizing, say, a IlY­
drogen atom? Field strengths that can be created by
modern devices are about 107 to 108 Vim.
9.8. In a He-Ne laser, the helium atoms are excited from
the ground state to two sublevels, 218 and 238 , interact
with Ne atoms, and give off their energy to Ne atoms,
with the result that the latter are transferred to the 38
and 28 levels. The Ne atoms in these states emit radia­
tion and go over to the 2P level. In the figure, the 38
and 28 levels, each consisting of four sublevels, and the
2P level, which consists of ten sublevels, are depicted by
broad black bands. In addition to the above-mentioned
transitions, a transition from the 38 state to the 3P
level is possible, but we do not show this transition in
the figure. From the 2P state, Ne atoms go over to the
18 state, and then gradually return to their ground state.
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Why don ~ t lIe atoms erni t radiation during transitions
from the 218 and 238 stales directly to the ground state?
What must be the relationship between the lifetiInesof
He atoms in states 38, 28, and 2P for continuous genera­
tion of radiation to be possible? It has been established
that of the two transitions, 38 -+ 2P and 28 ~ 2P, one
is accompanied by radiation in the visible spectrum and
the other, in the IR spectrum. Which transition corre­
sponds to which spectrum?
9.9. The angular momentum of electrons in an atom and
ts spatial orientations can be depicted schema tically by

He Ne

Fig. 9.8 Fig. 9.9

a vector diagram where the length of the vector is pro­
portional to the absolute value of the orbital angular
momentum of an electron. What vectors in the diagram
correspond to the minimal value of the principal quantum
number n and what are the values of the quantum num­
bers land m?
9.10. In the Stern-Gerlach experiment, which was con­
ducted with the aim of discovering the spatial quantiza­
tion of an atomic rnagnetic moment, a beam of silver atoms
is sent through a nonuniform magnetic field generated by
magnets whose configuration is shown in the figure. Why
does the experiment require a nonuniform field?
9.11. The intensity distribution of X-ray radiation over
wavelengths consists of a continuous spectrum, which is
limited from the short-wave side by a limit wavelength
Am' and a characteristic spectrum, which consists of sep­
arate peaks. In the figure (with an arbitrary scale) we
depict such a distribution for a voltage Ul applied to the
X-ray tube. How will the distribution change if the vol­
tage is decreased three-fold, that is, U2 = (1/3) U1?
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9.12. An electron is inside a potential well with vertical
walls. The electronic wave function is depicted in the
figure. Is the depth of the well finite or infinite?

-- -

Fi~. 9.10

u

Fig. 9.11

Fig. 9.12

9.13. An electron is in motion in a potential well of infi­
nite depth. Depending on the electron kinetic energy, the
electronic wave function has different configurations de­
picted in the figure. Which of these states is retained when
the width of the potential well is decreased two-fold?
By what factor will the minimal kinetic energy of the
electron change in the process?
9.14. From the viewpoint of the optical analogy of the
wave properties of an electron, the regions of space where
it possesses di fferent potential energies may be interpret­
ed as regions with different refractive indices. In the
figure two such regions are depicted, the regions are sepa­
rated by a boundary where the potential energy P expe­
riences a jump. In which of these regions is the refractive
index greater? In which of the two cases, when the elec­
tron moves from left to right or when it moves from
right to left, will the phase of the wave function he re­
t.ained under reflection of the electron from the harrier,
and in which will it change to its opposite?
9.15. An electron moving from left to right meets an ob­
stacle, which in one case is a step (Figure (a)), and in the
other a barrier (Figure (h)). What are the probabilities
of the electron overcoming the step and the barrier ac­
cording to the classical theory and the quantum theory in
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two separate cases, namely, when the electron kinetic
energy E is lower than P and when it is higher than P?
9.16. An electron moving from left to right passes through
three regions: I, II, and III. Its k iuet.ic energy ill rc-

a

4

Fig. 9.t3

gions I and I II is the same, E. Assuming the poten­
tial energy in these two regions to be zero, find the rela­
tionship between the kinetic energy E and the potential

x
Fig. 9.14

Xo
(Q)

Fig. 9.15

energy P in region I I if the electronic wave function has
the configuration depicted in the figure.
9.17. According to classical kinetic theory, absolute ze­
ro is the temperature at which molecular motion ceases.
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In relation to a solid body, this means that the thermal
oscillatory motion of atoms or molecules forming the
crystal lattice also ceases. Is the same conclusion valid
from the standpoint of quantum mechanics?

I n ill

x

Fig. 9.16

10 10 30 Lt0 50 60 70 eo 90 Z

~.;.:.....-
::r

::....,r---
~.c

:.:.:....-f----n·HL
7

.....
•~·i· N=Z

::r" /.....
)~. /

-:-1, l/:11"

'I
J
/.):f-

f---- f---->--~i:V
~

lIT
l/

40

30

20

1Q

70

60

50

(a)

10 i5 20 25 (U+q>fh

9.18. In an experiment set up to study the diffraction of
electrons, a hearn of electrons whose energy can be varied
by varying a potential difference is directed to a surface

N
I~O
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90

80

(b)

Fig. 9.18 Fig. 9.19

8*

of a single crystal at an angle O. rr~.e. diffracted (scattered)
beam is analyzed by a detector posi t.ioned at the same an­
gle e (Figure (a)). In the experiment, the current of the
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scattered electrons was measured as a function of the ap­
plied potential di fference used to accelerate the electrons.
The results were plotted on a diagram, with the square
root of the accelerati.ng voltage laid off on the horizontal
axis and the electron current, along the vertical axis. The
curve consists of a number of alternating maxima and
minima. As Figure (b) shows, the distance between the
maxima at first is not the same, and the greater the vol­
tage, the smaller the discrepancy. Explain the pattern
of maxima and minima.
9.19. The number of protons and the number of neutrons
in the nuclei of stable isotopes are laid off on the horizon­
tal and vertical axes, respectively. Why does the fraction
of neutrons in the overall number of nucleons increase
with the rnass number of the Dueler?
9.20. How many nucleons can there he in a nucleus OIl

the lo\vest quantum level?
9.21. A counter registers the rate of radioactive decay,
that is, the number of radioactive decay acts taking place

log0

o
Fig. 9.21

t

[II]
Fig. 9.22

Fig. 9.24

every second. The results obtained in such measure­
ments are plotted in the Iorm of a diagram ill which the
time interval from the beginning of counting is laid off
on the horizontal axis and the logarithm of the decay
rate, on the vertical axis. I-Iow to find the half-life of the
radioactive element from such a diagram?
9.22. In the Periodic Table, we select three consecutive
elements, say, a, b, and c. A radioactive isotope of ele­
ment a whose proton and mass numbers are placed at the
symbol of the element transforms into element b, which
in turn transforms into element c. This last element trans­
forms into an isotope of the initial element a. What pro­
cesses cause the transformations a -+ b, b -+ c, and
c ~ a? What are the proton and mass numbers of the nu-
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clei of elements band c and those of the nucleus of ele­
ment a after the final transformation is completed?
9.23. A number No of atorns of a radioactive element are
placed inside a closed volume. The radioactive decay
constant for the nuclei of this element is AI. The daughter
nuclei that form as a result of the decay process are as­
sumed to be radioactive, too, with a radioactive decay con­
stant A2 • Determine the time variation of the number of
such nuclei. Consider two limiting cases: Al~ A2 and

"'1~ "'2'9.24. The track of a bet.a particle (an electron) in a
Wilson chamber has the shape of a limacon (a spiral).
Where does the track begin and where does it end? How
is the magnetic field that forces the beta particle to move
in this manner directed?
9.25. In beta decay, the velocity of the nucleus that emits
an electron is not directed along the line along which the
electron velocity is directed. How can this phenomenon
be explained?
9.26. The track of a proton ina Wilson chamber has a
"knee", where the proton changes its trajectory by 45°.

I

Fig. 9.25 Fig. 9.26 Fig. 9.27

Momentum and energy conservation implies that the
proton has collided with a neutron. Which of the two par­
ticles has a higher energy if the neutron is considered to
be initially at rest and free?
9.27. The track of an alpha particle in a Wilson chamber
filled with a gas has a "knee", where the particle changes
its direction of flight by an angle greater than 90°. Start­
ing with what gas in the Periodic Table'Iis such a track
possible?
9.28. Two radioactive ions are emitted by an accelera­
tor in the same direction with the same velocity v whose
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absolute value is close to the speed of light. Fnllowing this
event, the nuclei of the ions emi t electrons (each nucleus
emits one electron). The velocity of one electron coin­
cides in direction with v while the velocity of the other
electron is in opposition to v. With respect to the nuclei the
electron velocities (their absolute values, that is) are the

Accelercte-

Fig. 9.28

same, v. Find the electron velocities with respect to the
(fixed) accelerator and the velocity of one electron with
respect to the other.
9.29. Within the framework of the "classical" Bohr the­
ory, an excited atom is an atom one electron of which
moves along an orbit that is farther from the nucleus
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Fig. 9.29 Fig. 9.30

than in the ground state (Figure (a). When the atom
goes over to its ground state (Figure (b), the atom emits a
photon. In the literature, especially popular-science lit­
erature, the common way to describe this process is to say
that mass has transformed into energy. Is this actually
the case?
9.30. Two charged particles acquire equal energy when
moving in an accelerator. The dependence of the mass of
each particle on the energy acquired is depicted by curves
1 and 2 in the figure. Which of the two particles has a
greater rest mass?
9.31. The principIe of operation of a linear accelerator
is illustrated in the figure accompanying the problem. A
charged particle is emitted by a source and is accelerated
by a potential difference U between source S and cylin­
der 1. During the time it takes the particle to fly through
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cylinder 1, the potential difference between 1 and the
next cylinder, 2, changes its sign and, leaving cylinder
2, the particle again finds itself in an accelerating field
with the same potential difference U. The length of cylin­
der 2 is selected such that when the particle leaves this
cylinder, the field will again change sign, so that the
particle is accelerated anew, and so on. If the particle hag

lE: _1 li ];:1 _N
S T - T----- T

1
~

r
Fig. 9.31

passed N gaps between the cylinders, the energy it acquires
is W ~ eUN (it is assumed that the particle is singly
charged). Since as the particle is accelerated the path it
traverses in the course of a single change in polari t y be­
tween the cylinders increases, each subsequent cylinder
must be longer than the previous one. However, at a cer­
tain high energy the size of cylinders ceases to grow.
What determines the maximal length of a cylinder if the
frequency of variation of the voltage between the cylin­
ders is v?
9.32. Why cyclotrons are not employed to accelerate elec­
trons? What generated a need for building more complex
accelerators such as the synchrocyclotron :'and lthe syn­
chrophasotron?

DetectorU---
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H
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Fig. 9.33 Fig. 9.34

9.33. Two samples of radioactive iron 57Fe emit gamma­
ray quanta. One sample is placed at an altitude H above
sea level and the appropriate detector at sea level, while
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the second sam ple is placed at sea level and the appropri­
ale detector at altitude H. Which of the two detected
quanta has a higher frequency?
9.34. In observing Cerenkov radiation it was found that
light propagates at an angle 8 to the direction of electron
motion. Find the refractive index of the substance in
which the radiation is excited.



Answers and Solutions

1. Fundamentals of Mechanics

1.1. If AB = AC == l, then the times of flight from A
to B and from B to A are, respectively, l/(c - v) and
l/(c + v). The entire flight time is

t __l_ __'__~
1- c-v + c+v - cl_v,e

For the second airplane to fly from A to C, its velocity
must be directed at an angle to the direction of the wind

Fig. 1.t Fig. 1.2

in such a manner that the resulting velocity directed to­
ward C is equal to (c2 - V2) 1/ 2 in magnitude. The entire
flight time of this airplane will be

2l
t2 = V-- ·c'-vl

The second airplane will arrive before the first, and the
flight time ratio is

t 2/t1 = V1-V2/ C2 •

1.2. The figure shows that

t e Vo sin a + U t + Uan == == an (X ------:-,--
Vocos ex vO·,cos a.

Velocity v can be found frorn the equation

(vo sin ex, + U)2 + v: cos2 a = zr,
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which yields

V~V .. / 1 +2 ~sina+(~)2.
o V Vo Vo

The boat will travel directly across the river if e ::=: 0.
Under this condition, sin o: = - ulu.; Obviously, the
boat can travel at right angles to the current only if Po

is greater than u.
1.3. The time of travel by boat from A to C is

t 1 = Vx2+a2/vt·

The time of travel by foot from C to B is

t2 =:: -V (d- X)2 + b2/ V2•

The total time of travel is

-VxS+a2 V(d-X)2-t--lJ 2

t ~ tt + tz == + .
VI V2

The extremum condition is dtldx = 0, or
dt x d-x
dx = VI Vx2+a2 V2 V'"(d-x)2+b2 =0.

Since
x . d d-x ·

Vx2+a2 ~~Slna1 an V(d-x)2+b 2 ==SIOct2,

we can write sin (Xt/vI == sin a 2/v2, whence
sinal Vl

sin <%2 v;-.
We can easily see that the extremum corresponds to the
minimum of time of travel.
1.4. The time of travel along straight line Be is deter­
mined by the length S of segment BC and the acceleration
ui. The figure shows that

S == -Va2+h2 , w == _h_ g.
Ya2 +h2

Since S = wt2/2, we can write

Va2+h2==~ h t2

2 Va2+h2 '
whence

_ /2 (a2 +h2 )

t- J C h '
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Nullifying the derivative (the extremum condition),

dt h2 - a2

dh ~-~ V 2gh3 (a2+h2)
0,

yields h === a.
The same result is obtained if we express Sand w in

terms of a:

S == a/cos Cl, w == g sin ex,

t= 1//~ a
Y g sin ex. -cos a ·

Nullifying the derivative dt/dct, we find that a == 45°.
1.5. The acceleration in rectilinear motion is the second
derivative of the distance traveled with respect to time.
For a concave curve the second derivative is positive, while
for a convex curve the second derivative is negative,
whereby curve (a) corresponds to decelerated motion and
curve (b) to accelerated motion.
1.6. By definition, acceleration is the time derivative of
velocity, w = dv/dt. For rectilinear motion the vector
equation can he written in scalar form. The acceleration
is the highest when the derivative is the greatest, that is,
when the curvature of the curve is maximal. The curva­
ture is determined by the slope of the tangent line to the
particular point on the curve. This corresponds to mo­
ment 2 on the time axis. Note that for curvilinear motion
the question contains an ambiguity, since to determine
the acceleration we must know the radius of the trajectory
at every moment in the course of the motion in addition
to the magnitude of the velocity. To find the average veloc­
ity, we must know the distance traveled by the particle
in the course of a definite time interval. In terms of the
velocity vs. time graph, the distance traveled is the area
of the figure bounded by the curve, the time axis, and
the vertical straight lines passing through the initial and
final moments of time on the time axis. Analytically the
distance is calculated via the integral

t.

s ; Jvdt,
f.
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whence the average velocity is
t.
5vdt

v=_t_t_
t2 - tl •

1.7. In terms of the velocity vs. time graph, the distance
traveled is determined by the area bounded by the curve

and the time axis. Thisx
-------------- ama is

Xm
The average velocity is

S 3t
v=T=~ TVm·

o t Such motion cannot be re-
Fig. 1.8 alized in practical terms

since at the initial and final
moments of the motion the acceleration, which is dvldt,
is infinitely large in absolute value.
t.8. The particle will never get to point B but will ap­
proach it without bound. Indeed, from the equation
v = Vo - ax we get

~=dt.
vo-ax

Integration of this expression yields

In (ox-vola) = -at,
-vola

whence

x=~(1-e-at). (1.8.1)
a

The limit value X m = vola can be attained only at
t ~ 00. The dependence of x on t defined by Eq. (1.8.1)
is represented by the curve shown in the figure.
1.9. The acceleration

dv dv dx
w=dt= dz dt =k(vo+kx)

increases with x. The same result can be obtained from
the following line of reasoning: at constant acceleration
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the relationship between the velocity and the distance
traveled is given by the formula

v2 = v~ + 2wx,

so that the velocity increases in proportion to the square
root of the distance. Hence, for the velocity to increase
linearly wi th x, tile acceleration must increase.
1.10. The train covers tho distance dx in the course of
cIt == dxlv (x), where v (x) is the speed with which it
travels over dx. The total time of motion is

s

t = Jv~;) •
o

The average speed is determined by dividing the distance
covered by the train by the entire time of motion:

S
Vav = S

r dx
J v (x)
o

If the graph cannot be represented by a formula, it can
he reconstructed into the 1/v vs. x graph. In this case the
integral in the denominator of the expression for Va v

can be evaluated by graphical means.
1.11. Tho speed with which the lower end of the rod
moves, V x == dx/dt, can be written in the form

dy dx
V x = (It dg~

Since x = Vl2 - y2, we can write

dx y
dg= - Vll_y'l. '

whence
y dy Y I Vy I

v~= - Vl2 - yS de = Vl2_l/'I. •

Thus, the speed of the lower end gets smaller and smaller
and vanishes at y = o.
1.12. Since the drag is proportional to the velocity of the
object, so is the 'acceleration caused, by this force (with a
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minus sign). lienee, by Newton's second law,

dv
(ft= -g-rv,

where r is the proportionality factor. Whence

v,

v

Fig. t.12

v t

) v~~/r= -r Jdt.
Vo 0

Integration yields*

v = ( Vo+ ; ) e-ri - ; .

(1.12.1)

For v === 0 this yields

t ===! In (1 + rvo ) •
m r g

(1.12.2)

To find the maximal altitude, we rewrite (1.12.1) in the
form

dh ( g) -rt g-= v +- e -_.dt 0 r r

Integrating this equation up to t, we find that

h == (vo+ L) .!. (1- e-r t ) _1. t.
r r r

(1.12.3)

(1.12.4)

Bearing in mind that at the point of greatest ascent v ==
dh/dt = 0 and combining this result with (1.12.3),
we get

(1.12.5)

Combining (1.12.4) with (1.12.5) yields

h = vo-gtm .
r

Substituting t m from (1.12.2), we arrive at the final re­
sult

h = +[vo- ; In (1- r;o )].
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When drag is extremely low, or rvojg~ 1, we can employ
the expansion

In (1 +~) ~ ~_ 1- (~)2.
g g 2 g

This results in the well-known Iorrnula
2

h==~
2g •

* The section of the curve that lies below the t axis (see the
figure) corresponds to the descent of the object after the
object has reached the maximal altitude. The rate of descent
asymptotically approaches the value at which the force of
gravity is balanced by the drag.

1.13. The acceleration vector can be decomposed into
two components, the tangential acceleration Wb which is
directed along the same straight line as the velocity of
the particle, and the normal acceleration W n , which is
perpendicular to the velocity. For instance, for e > 90°
(see Figure (a) accompanying the problem) the tangential
acceleration is directed opposite to the particle's velocity
and the motion in this case is decelerated, w < O. The
presence of a nonzero normal acceleration suggests that
the motion is curvilinear. The situation for the other
cases is as follows: for e< 90° (Figure (b)) the motion is
curvilinear and accelerated, for e = 90° (Figure (c) the
motion is curvilinear and uniform, and for e == 1800

(Figure (d) the motion is rectilinear and decelerated,
w < O. Of course, characterizing the motion by the angle
between the velocity v and the acceleration w is meaning­
ful only for a definite moment in time. Subsequent ITIO­

tion may change this characteristic.
1.14. The normal acceleration is

Wn = v2/R = w2R ,

whence the linear velocity grows in proportion to the
square root of the curvature radius of the spiral, while
the angular velocity decreases by the same law.
1.15. When the angle between the total acceleration and
the radius becomes equal to 45°, the normal acceleration
becomes equal to the tangential acceleration. Since
W n :=::: w2R and Wt == eR, we have w2 == e, and since
(I) == et , we have e2t2 == E, with the result that

B = 1/t2
•
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1.16. The acceleration with which the object moves is
the acceleration of gravity, which at all points of the
trajectory is directed vertically downward. From the
figure that accompanies the problem we see that as the
object ascends the tangential acceleration decreases while
the normal acceleration grows. At the highest possible
point the tangential acceleration is zero while the normal
acceleration is equal to the acceleration of gravity.
1.17. Since at point A the sled's velocity is zero, so is the
normal acceleration W n == v'llR. The tangential accelera-

tion is directed down the
hill along the tangent to
the surface of the hill.
The figure accompanying
the answer shows the forces
that act on the sled. These
are the force of gravity mg
and the reaction force N
exerted by the surface of
the hill. The resultant F

is directed downward along
the hill. According to
Newton's second law, the

acceleration vector points in the same direction as the
resultant. If there is friction, the resultant vector does
not change direction but becomes somewhat shorter,
with the result that the tangential acceleration becomes
smaller, too.
t.18. The acceleration vector points in the direction of
the resultant of the forces acting 011 the object. At the
lowest possible point only the force of gravity and the re­
action force act on the body, provided that there is no
friction. This means that at this point the object experi­
ences no tangential acceleration. Since the object is mov­
ing along a curvilinear trajectory with a certain veloci­
ty, there is a normal acceleration, which is directed to­
ward the center of curvature of the trajectory. This acce­
leration is generated by the difference between the reac­
tion force exerted by the surface and the force of gravi­
ty.
1.19. In the course of time tlt the angular veloci ty vector
will vary from (01 to 0)2 without changing its length. The
direction of the vector will change by an angle of ~cp.

This angle is equal, on the one hand, to 1.100 I/w and,
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on the other, to ~S/R, where J1S
1

stands for the displace­
ment of the center of the wheel. * This displacement is
equal to QR I1t, where ~2 is the angular velocity of the
cenler of tho wheel. Thus,

I ~CI) j/ro=QRM/R and B= lim ~CJJ =roQ.
At-+O t

(1.20.2)

Fig. t.19

e=w2 -!....R·
* It is assumed that L\cp~ 1 rad.

When the wheel is rotating, the point at which it touches
the arena wi ll shift in the course of I1t by a distance of
ru>l1t on the wheel and by
R~2~t on the arena. Hence, co
and ~~ are l inkod by the fol-
Iowi ng Iorrnula: wr ~ ~~/1, w2

whence

1.20. Tho height of the cen­
ter of Blass of the vessel with
the liquid is determined hy
the formula

he =--= IVl (If /2) -f- m (.r/2) , (1.20.1), M+,n
where In is the mass of the liquid. We rewrite (1.20.1)
by replaci ng t.he mass of the liquid wi th 6x:

h _~ M//+6.x2

c- 2 M+fJx .

Nullifying the derivative of h with respect to x,

dhc ==! 20x (M -t-fJx) - 0 (MIf -1- fJx2
) =-.: 0

dz 2 (M +cSx)2 ,

we get

,. _ .. /- M2 I AI11 _!!-
.I -- + V (~2 --: (~ {) •

(1.20.3)

Of course, only the posi tive value of the root has physi­
cal meaning. Substi t.ut.i ng this value into (1.20.2), we
will find the position of the center of mass. After elemen­
tary transformatious we get

he ~= V ~2 -+- ~1I - 1.
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We have found that the position of the center of mass co­
incides with the level of the liquid.

Here are some particular eases:
(1) 6H === AI (the liquid filling the vessel cornpletel y

has a In3SS equal to the mass of the vessel). Then

hc = x= H (V 2- 1)~ 0.41H.

(2) 61/~ M. Let us transform (1.20.3) to the form

AI (I 6H )x =-~. T ]/ 1 -~ At - 1 ·

The fraction in the radicand is considerably less than uni­
ty. Expanding (1 -1- 6H/ A1)1/2 in a series and retaining
only three terms, we get

M ( fJI{ 62112
)

X ~ T 1+ 2M - 8M2 -1 ,

or

H ( su )hc==x~2 1- 411-1 •

The level of the liquid is below the middle of the vessel
by au insignificant distance.

(3) 01/» M, Let us transforlll (1.20.3) to the Iorm

( / M'l. M M )
x===H l 62H2 + ofl - fJH •

Bearing in mind that (M /OH)1/2 ?;> M/6H, ,ve can assume
that the expression inside the parentheses in the above
Iorrnul a is simply (JV1/6H)1/2, whence

he = X ~ H (M/6H)1/2.

Tho level of the liquid is above the bottom of the vessel
by an insignificant d istance. ~

1.21. For the object to be in a state of equilibrium in re­
lation to the wall of the funnel the resultant of the forces
acting on the object must impart an acceleration to the
object together with the funnel. These forces are the force
of gravity and the reaction force exerted by the funnel.
Since the force of gravi ty is constant in this problem and
the resultant rnust be directed horizontally, the direction
and magnitude of the reaction force are determined uni­
quely. But the latter has a different value at different
distances Irom the funnel axis. At a constant angular ve-
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10city of the Iunnel , the greater the radius of rotat.ion the
greater the reaction force. For this reason (see the Iigurc
accorn panyi ng the answer}, as the object moves Iarther
from the funnel axis, tho resultant of the force of gruvi t.y
and tho react.ion force <lc,quil'cs a component directed up­
ward, while as the object moves closer to the axis, the re­
sultant acquires a component directed downward. In

Fg. 1.2\ Fig. 1.22

tho first. ease the object tends to move away Irom the axis
still further and rises, while in the second case it tends to
move toward the axis [\})(I lowers. Thus, the stale of equi­
libr i urn is unstable.
1.22. It is convenient to think of the vessel with water
as a noninertial system. In this case, on each particle of
water there acts, in addi Lion to the force of gra vi ty, a
force of inertia equal to the product of the particle's mass
by the acceleration taken wi th the minus sign, The sur­
face of water is a plane perpendicular to the vector of the
resultant of these two forces. The slope of this surface ill
relation to the horizontal plane is

tan ex == wig.

1.23. Just like in the answer to the previous problem,
we can assume the vessel with the liquid to be a noniner­
tial system, in which a force of inertia equal to -mw::::::
-rnU)2x acts on every particle of mass In. The resul­
tant of this force and the force of gravity is perpend icular
to the surface of the liquid. The derivative dy/dx, equal
to the slope of the line tangent to the surface at a gi ven
point, is

dy moo2x

-d === tan a= --.x mg
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Integratiug, we iind that

The surface of the liquid is shaped in the forrn of a parabo­
loid of revolution.
1.24 . Just like in the answers to Problems 1.22 and 1.23,
the vessel can he assumed to he a noni nerl.i al system. In
such a syst.em , every mass clement of wa tor, say, an ele­
mont whose volurne is equal \.0 the volume of the piece of
cork, is ill a state of equili briurn due to three Iorces:

(a).

w~

I
I
I

--i·~z._ -m~ -- I
l.!.. I_ -.. mg "I

r

(b)

Fig. 1.23 Fig. 1.24

the force of pressure of the surrounding water, the force
of gravity, and the force of i nert.i a , which is equal to the
product of the element's mass by the normal acceleration
of that element taken with the minus sign (Figure (a)).
There are also three forces acting on the piece of cork that
replaces the element of water: the force of pressure of the
surrounding water is the same but the forces of gravity
and inertia are lower. As Figure (b) shows, the net force
(the difference between the force of pressure and the
forces of gravity and inertia) make the cork rise to the
surface and, at t.he same time, move toward the axis of
the vessel.

A similar line of reasoning forces us to conclude that
an object with a density greater than the density of water,
when immersed into a rotating vessel with water, wi l l
sink and" in the process, move toward the wall of the ves­
sel.
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1.25. According to Newton's second law,
t

j F elt~ !J.mv.
o

In tho ease at hand,
t

j F <It ~= Fmt/2,
()

whence
V ==--= }/Int/2m.

1.26. The work performed along ac' is

Al == ac' mgk.

The work performed against the forces of Irict.ion on tho
inclined segrnent ac is

A2 ==- ac mgk cos ex == .z': mgk cos a == ac'mgk .
cos a

We see that the two quantities coi ncide, and so, obvious­
ly, do the simi Iar quantities for c'b and cb. The change in
the potential energy about ac' band acb is zero. Thus, the
work performed against the forces of IricLion along
ac'b and that performed agaiust the forces of friction
along acb coincide.
1.27. The initial potential energy of the object with res­
pect to the bot tom of t.he hill, mgh, has been used up Ior
work against the force of friction. In returning the body
to its initial position, the force performs the same work
and, in addition, imparts to the object the initial poten­
tial energy. As a result, the total work will he 2mgh.
1.28. The work performed on an elementary segment of
displacement is equal to the decrease in potential energy:

dA == -dW.

The same work can he represented as the product of force
by displacement:

Hence
dW

Fx == - dx == -·2ax.
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Forces known as quasiclast.ic also obey this law.
·1.29. When the object is immersed in the liq uid , Lwo
forces act on it: the Iorce of gravity and Archimedes'
force. If V is the volume of the object, the resultant of
these t \VO forces is

For POb > Pl1q' as the object is immersed in the liquid,
its potential energy continues to fall below zero, but slow­
or than it would in air. The rale of this decrease is the
higher the greater the value of rOb" Straight line 1 in the
figure accom panying the problem corresponds to an object
sinking in a liquid. When POb == Plifl' the potcntial ener­
gy remains constant (straight line 2 co incidi ng with the
x axis). If rob < Pl1Q' the potential energy of the object
begins to increase when the object sinks into the liquid
(straight lines 3, 4, 5), and the rate of this increase is the
higher the lower t he value of Pob. The potential energy,
while growing, cannot exceed the initial potential energy
of the object in air (the dashed horizontal line), and the
object can attain this level only when the medium exerts
no drllg Oil it. If this is the case, the object will sink to a
certain level in the liquid, slop, and then return to the
surface with tho same speed at tho surface as it had when
it entered the liquid. Onc.e out of the liquid, the object
will rise to the height determined by the initial potential
energy. After this it drops back into the liquid, and so
on. Of course, under real conditions the drag exerted by
the medium wil l slow down the object, and the greater
tho viscosity of the liquid the Iaster this happens.

If 1he density of the material of the object is one-half
the density of the liquid, Pob :.--:.:; (1/2)PUq, then

III this case the difference between Archimedes' force and
1he force of gravi ty is equal (in absolute valuc) to the
latter but is directed. in opposition to the force of gravity.
Tho slope of the straight line must he the same as that of
the slraight line that represents the vari at.iou of the po­
tential energy of a falling object. Straight Ii ne 4 has such
a slope.
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1.30. The formula that links the force act.i ng on an object
with the potential energy of the object,

dWF ---
r - dr'

shows that equilibrium, which occurs when the force is
zero, sets in when d W/dr == O. There are two SUCll points
on the curve, point 2 and point 4. Since when the object
moves away from point 2 its potential energy increases
while when it moves away from point 4 its potential ener­
gy decreases, at point 2 oquilibrium is stable and at point
4 it is unstable. The fact that a system always tends to
a state in which its potential energy is minimal i mplios
that repulsive forces act on the 1-2 and 4-5 segments and
an ut.t.racti ve Iorce acts on the 4-2 segment.
1.31. Momentum conservation for the given problem can
be written thus:

(1.31.1)

where m., is the bullet's mass, m2 tho load's mass, Uo
the i ni tial veloci ty of the bullet, Ul the final velocity of
the bullet, and U 2 the velocity acquired by the load as a
result of the collision. From (1.31.1) it follows that

(1.31.2)

If the bullet flies through the load, after it has left the
load it has a velocity that is surely greater than U 2 •

We write U 1 == u2 + V. Substituting this expression into
(1.31.1), we get

ml (vo- V)
u2 :.=:: ml +m2 •

(1.31.3)

If tho bullet gets stuck in the load, then U 1 === u 2 ann,
hence,

(1.31.4)

Finally, if the bullet recoils from the load, the velocity it
acquires after collision, Ul' is negative and (1.31.2) can
be wri tten in the form

ml (vo+ I Ut 1)
u2 = m2. (1.31.5)
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Fig. 1.33

A comparison of (1.:31.3), (1.3'1.4), and (1.31.5) shows that
the load acquires the highest veloci ty (and the greatest de­
flection, as a result) when the hullet recoils Irom it, while
the Iowost velocity is acquired when the bullet pierces
the load.
1.32. For the sake of convenience we employ a coordinate
system in which the velocity of one of the spheres prior
to collision is zero. According to the energy conservation
law, in the case of an absolutely elastic collision we have

where m 1 and m 2 are the masses of the spheres, Vo is the
velocitiy of the first sphere prior to collision, and U 1

and u 2 are the velocities of
the spheres after collision.
Since the masses of the spheres
are the same, we can write

~-..-.....-----'-...60-~..... mtvo v~ = u~ + u:.

The velocity vector Va is the
hypotenuse of a right triangle
whose sides are the velocit.y
vectors "1 and U 2 ' and hence
the angle between Ul and "2

is 90°.
1.:-J3. Let U 1 and u 2 he the final velocities of the impinging
sphere and Lhe one that was at rest prior to collision, res­
pect.i vely, and 0 is the angle between Ul and yo. The equa­
tions that express the laws of conservation of energy and
momentum (for each projection) have the following form:

222
lnlvO __ mlu t + m2u2

2 -- 2 2'

mlvO == nuu., cos e + m 2u 2 cos ({),

m1u1 sin 8 + m 2u2 sin 'P == o.

(1.33.1)

(1.33.2)

(1.33.3)

If m l , m 2 , and V o are fixed, then U 1 ' U 2 , 8, and rp are
linked through three equations. For this reason two of the
four variables can be excluded and the variable e can be
expressed in terms of the third remaining variable, say,
U1• Taking n~lul cos e to the left-hand side of Eq. (1.33.2),
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squaring the result and Eq. (1.33.3), and adding the l \VO

squares, we get
2 (. 2 2 · ~ 0 ~) __ 2 2m1 Vo - U1U Z cos -t- U 1 -- nt-/1 2•

Replacing u z with its value obtained Irorn (1.:-33.1) and
carrying out the necessary transformations, we arrive at
a quadratic equation for U 1, namely,

whose solution has the form

Ul=ml~m2 (cosO + V (;:;r-sin20) Vo· (1.3:~.5)

This equation shows that the maximal angle 0 is deter­
mi ned by the condi Lion

sin 8m == m 2/m1• (1.33.H)

For values of e smaller than 8 m two cases are possible,
since two distinct values of U 1 correspond to one value of
8. For example, for m1/mZ == 3 and sin 8 == 0.2, the veloc­
ity U 1 may have two values, O.93vo and 0.53vo. The first
col lision is commonly known as soft, while the second is
commonly known as hard. The extreme ease of soft ('.01­

Iision is the grazing collision (01' even the case where one
sphere misses the other), while the extreme case of hard
collision is the head-on collision, after which the ve­
locity of the irnpinging sphere becomes

Condition (1.33.6) can be obtained in another manner
as well. For instance, if we express cos 8 via (1.33.4),
namely,

() 1 ( ) U 1 ( ) Pocos...,=-- m1+m __J_ m1-m -
2ntl I 2 Vo 1 2 Ul '

and nullify the derivative of cos 8 wi th respect to U 1,
We can find the minimal value of cos 0 or t.he maximal val­
ue of sin 8. The motion of the i mpiug i ug sphere can also
he considered using the system of coordinates Ii nk erl wi th
the center of mass of the two spheres. If in the laboratory
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system the coordinates of the spheres arc Xl and .X 2' l hen
the coordinate of the center of mass is

m'lX t +m2x2
x= ml+ m2 '

whi le the velocity of the center of ITIUSS is

ml
vc = - + vo•ml m2

Correspondingly, the velocity of the i mpiugi ng sphere 1(}

this system prior to collision is

v; = Do - Vc = Vo·

As a result of the collision the vector v~ retains its
length but turns through a certain angle depending on the
distance between the center of the second sphere and

(0) (b)

Fig. t.33

(C)

the direction of flight of the i mpiugiug sphere prior Lo col­
lision. The velocity u, is equal to the sum of v~ and Yc­

The momentum vee-tors of both spheres are shown in t.he
figure for three cases: soft collision (Figure (a)) and hard
collision (Figure (b)) for rn 1/m 2 == 3 and sin 8 :-=: 0.2
and the case with sin e ~ m2hn1 =-= 1/3 (Figure (c.)).
The velocity of the impinging sphere after collision is

u1 = m+1vo cos e== O.707vo.
ml mz

The above-discussed problem is important for the theo­
ry of atomic collisions. For instance, if a potassium ion
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impinges on a helium atom (m1/m2 == 10), as a result of an
elastic. collision the ion may be deflected by an angle no
greater than 5.7°.
1.34. We will consider each case in the order that it ap­
pears in the problem.

(1) The directions of tho vcloci ties of the spheres in the
laboratory system are shown ill the figure accompanying

vor-- I~

I I
I

--.Ivo

(u)

Q -y-'-~V'2

o
(C)

\b)

~V2'

0

~ YoVf

(d)

Fig. 1.34

the problem. If at the moment of collision we project the
veloci tics of the spheres and the corresponding momenta
on two axes one of which co i ncides with the direction of
the initial velocity of sphere 1 and the other with that
of the ini ti al velocity of sphere 2, then in the first of
these two directions the spheres exchange the respective
projections of the velocities, just like in a head-on elastic
collision. Sphere 1 stops in the process. Since in the colli­
sion the force acts along the straight line connecting the
centers of the spheres, the i nit.inl velocity of sphere 2
is conserved, wi t h the velocity of sphere .1, which is per­
pendicular to the initial velocity of sphere 2, added to it.
As a result the velocity of sphere 2 becomes equal to the
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geonlcl.ric. SUIrl of the initial velocities of hoth spheres,
t.hat is, Uo-V 2:. (Figure (a)).

(2) 1'0 determine the velocities of the spheres in the cen­
ter-of-rnass system, we decompose the velocity vector
of each sphere into two perpendicular and equal compo­
nents, VIa, Vtb and V 2 a , V 2b. The components V I n and
V 2 a are equal in magnitude and point in the same direc­
t.ion. Obviously, the common center of mass moves in
the same direction and with the same velocity, vc' with
respect to the laboratory system. Therefore, in the system
linked with the center of mass there are only the veloci­
ties VI band V2b. The velocities of the spheres after colli­
sion can be obtained if we subtract V c from the velocities
of the spheres in the laboratory system. The other veloc­
ities are shown in Figure (b).

(3) In the system linked with sphere .1, the sphere, ob­
viously, remains at rest during the entire collision process.
The velocity of sphere 2 in this system can he obtained by
subtracting geometrically the initial velocity of sphere 1
from the velocity of sphere 2 in the laboratory system.
Since the velocity of sphere 1 after collision is equal, ill
the laboratory system, to zero a nd is also zero in I.he sys­
t.em linked with sphere 1, the velocity of sphere 2 ill
this system aft.er collision is the same as in the laboratory
sys tern (Figure (c)).

(4) In the system linked with sphere 2, the veloc.ity
of sphere 1 is obtained by subtrnct ing geornct.ricall y the
init ial velocity of sphere 2 from the velocity of sphere 1.
After collision the velocity of sphere 1 is equal, in abso­
lute value, to the final velocity of sphere 2 in the labora­
tory system and points in the opposite direction (Figure
(d)) .

In conclusion we would like to bring the reader's atten­
tion to the fact that the angular momenta of the spheres
with respect to the center of mass remain constant during
the entire collision process. In collision, the center of
mass is the point where the spheres touch and the angular
momentum of sphere 1 is zero and remains such after
collision. The angular momentum of sphere 2 is equal,
prior to collision, to the product of momentum mv by
the arm R. After collision the momentum of sphere 2
becomes mv -V2~ but the arm is now R/V~ so the product
is the same and the angular momentum is conserved. Of
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course, since the system consisting of the spheres is isolat­
ed, the angular momentum is conserved in the entire
process of motion.
1.35. After collision, sphere 2 acquires the velocity

(1.35.1)

U 3 == (ml -!' ln2) (m2 + m3) •

The extremal value of U 3 can be found by nullifying the
derivative of u 3 with respect to ms:

dU3 __ 4ml~1 (ml,n3 - m~) ---: o.
dm2 _.. [(lnl-~'ln2)(m2-\-ln:l)]2

From this it follows that

m2 :-:=-: Vnum-:

We can easily see that this value corresponds to the
maximum of u 3 •

Here are some particular cases.
(1) m 1 » rrt3 • In this ease

Sphere 3 acquires the following veloci ty after collision:

2tn2U2

U 3 ==-: m2 -1- m3 •

Substituting the value of U 2 from (1.35.1), we get

4mlm2vl

If we also assume that m1 »m2 , then

U 3 ~ 4v 1 •

If sphere 1 were to hit sphere 3 directly (without the
intermediate sphere 2), the highest velocity of sphere 3
for m , ~ m 3 would be roughly 2v1 •

In some fantastic projects of interplanetary flight it has
been suggested that the spaceship be accelerated to the
necessary speed through a series .of collisions with inter­
mediate objects whose masses must be calculated in the
appropriate manner.

(2) m1 == ma- In this case m 2 == m1 === rn3 and U a == VI'

(3) m1 ~ n~3' Assuming that m2~ nu, we get

U 3 ~ 4v1m1lms·

141



Here the velocity of sphere 3 IS approximately double the
veloci ty wi thout an intermediate object, sphere 2.
1 .36. The veloci ties of the spheres after collision are

1nl- nl2 2m!
ut :_-_: ml +m2 vo, u2 = ml-t m2 Vo·

Here are some particular cases.
(1) U 1 < 0 if nl,l < m2 • Since in this case 2m} < m1 +

m2 , we have 0 < u2 < Vo.
(2) U 1 == 0 if mi == m2 " Then U 2 == vo.
(3) U 1 > 0 if m1 > m 2 • Then 2m! > », + m2 and

Vo < U 2 < 2voo

1.37. The equations of motion for the loads and the
pulley can he written as follows:

m1w = mIg - T1, m 2w == T2 - m2g, Je == (T 1 - T2)R,
(1.37.1)

where T1 is the force exerted by the left end of the string
on the left load, T 2 the force exerted by the right end
of the string on the right load, J the moment of inertia
of the pulley, w the acceleration of the loads, and E is
angular acceleration of the pulley. Dividing (1.37.1)
by R, adding all the equations, and replacing e with
w/R, we arrive, after appropriate transformat.ions, at

w = :;1- m2 g. (1.37.2)
ml m2+ J /R

Equal ion (1.37.2) shows that in exact calculations we
must allow for the moment of inertia and the radius of
the pulley.

If the pulley is a homogeneous disk, then instead of J
wo can write lnp R2/2, and Eq. (1.37.2) assumes the form
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sheave, and £ the angular acceleration of the shaft of
sheave. El irni nat ing T front the equations and replacing e
with to!R and the moment of inertia of the shaft or sheave
wi th ill I12/2, we arri ve, after simple transformations, at

mw- g
- m+M/2 '

from which it Iol lows that the accelerations with which
l.he t\VO loads are lowered coincide. The angular accelera­
l ion is 1he greater t.he larger the radius .. which means t.hat
the shaft has a greater a ngulnr acceleration than the sheave.
1.a9. Prior to swi tch-on , the sum of the angular momon­
ta of all the parts of the vacuum cleaner is zero. When
the motor is switched on, a torque appears in the rotor
of the motor, with the same torque (in absolute value)
appearing in the stator and the easing of the vacuum clean­
er fixed to the stator. Due to the latter torque, the vacuum
cleaner begins to turn, hut this motion dies out very soon
because of friction.
1.40. When the engine of the helicopter of this type is
operating, two torques appear: one is applied to the
main rotor and tho other (equal in magnitude to tho
first) is applied to the fuselage of the copter. This second
torque tends to turn the fuselage in tho direction opposite
to that of the main rotor. The vertical tail rotor creates
a torque that cancels out the torque applied to the fuse­
lage. In toy helicopters this second rotor is fixed and the
helicopter rotates in flight in a direction opposite to that
of the main rotor.
1.41. The rod is in rotational motion, and so its poten­
tial energy is transformed into the kinetic energy of
rotation. If the mass of the rod is m and the length is l,
we have

mgl Jw 2

-2-=-2-·

I\eplac.ing ro with oll and J with ml2/3, we get

V= V3g1.

1.42. 1'0 determine the trajectories that the various
points of the rod describe, we introduce a coordinate
system whose origin lies at B, the lower point of the rod
prior to falling, whose x axis points horizontally in tho
direction in which point B moves during motion, and
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whose y axis points upward, along the rod prior to motion.
Since t.here are no forces that act on the rod in the hori­
zontal direction, the rod's center of mass moves downward
(frorn C to B). As Figure (a) shows, the coordinates of the

Dx

Fig. t.42

n x

points lying above the center of mass by a distance a
are determined by the equations

x ::-= -a cos ex, y:=: (R + a) sin ex,

whi lo the coordinates of the points lying below the center
of mass by a distance a are deterrnined by the equations

x == a cos «, y == (R - a) sin a.

These equations Imply that in the process of falling the
rod (and that means all of its points except the center of
mass) describes quarters of ellipses (Figure (b)) specified
by the equations

:x2 lJ2-+ -'--1 (upper points),a2 (R+a)2-

x 2 y2
(i2-t- (R-a)2 ==: 1 (lower points).

When the rod is falling, its motion can be considered as
rotation about an inslantaneous center, D. Therefore,
t.he velocity of the upper point (A) can be determi ned
just like in Problem 1.41, using the law of conservation
of energy. The appropriate equations yield

v==V6gR.

144



(1.43.2)

1.43. The velocity imparted to point A will he directed
in opposition to Vo if the rod's linear velocity acquired as
a result of rotation after the bullet has hit the rod is
greater than the velocity of the center of mass of the rod.
Moreover, for such a situation to occur, the distance x
111USt not exceed one-half of the length of the rod. Accord­
ing to the l aw of conservation of momentum,

nUJo === 111, (lJ + (Ox) + M». (1.43.1)

Here we have allowed for the fact that the velocity of
the bullet after the bullet has hit the rod is the sum of
the velocity of the center of mass, v, and the velocity ffiX

which the point that is distant x from the center of mass
acquires as a result of rotational motion with angular
velocity ro.

According lo the law of conservation of angular mo­
mentum,

lnv oX·,== m (v --1- wx) x + Jt»,c

where .T is the uuornent of inertia of the rod nho ut the
center of mass, J == MR2/3. Multiplying ('1.43.1) by x
and subtracting the product from (1.43.2), we get

(0 == Mvx/J = :1vx/.R2.

The linear velocity of rotation acquired by point A (we
denote this velocity by V) is

V = wR = 3vx/R.

The ratio V/v is greater than unity if x > R/3.
1.44. According to the right-hand screw rule, the vector
of the angular velocity of the gyroscope is directed to the
right in the figures accompanying the problem and the an­
swer. The revolving platform applies a torque to the frame,
and the vector of this torque is directed perpendicularly
to the vector of the angular velocity of the gyroscope.
This torque creates an angular acceleration e, and under
this acceleration the vector of angular velocity rotates
in the direction shown by the arrow in the figure accom­
panying the answer. As a result the giroscopc's axis places
itself vertically and the direction of rotation of the gyro­
scope coincides with the direction of rotation of the plat­
Iorm , If the direction of rotation of the gyroscope or the
direction of rotation of the platform were to change, the
gyroscope's axis would point in the opposite direction.
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In all cases the axis rotates in such a manner that the
vector of angular velocity places itself ill the direction
coinciding with that of the vee-tor of an oxt.ernal torque.
'I'his property of gyroscopes is used in navigutiou in
gyrocompasses. Tho "platform" Lhat applies a torq ue to
the gyroscope is the earth in this case.
1.45. The vector of the angular velocity of the top is
directed upward along the top's axis (see the flgure
accompanying the answer). The force of gravity applied
to the t.op at the top's center of mass creates a torque

/...-
(

".......-

-------------
Fig. 1.44 Fig. 1.45

whose vector, baing perpendicular to the vector of angular
velocity, is directed away from the reader. This torque
does not change the magnitude of the angular velocity
but creates an angular acceleration and hence changes
the direction of the vector of angular velocity, just like
centripetal acceleration does not change the value of
the velocity but does change the direction of the velocity
vector, as a result of which the body to which the centri­
petal acceleration is applied moves along a circle. In the
case at hand the direction of the angular acceleration is
such that precession occurs counterclockwise (if one views
the top from above).
1.46. Since no external forces act on the shaft-sleeve
system, the total angular momentum of the system re­
mains constant:

Ish 000 = (Jsh + J s1) to,

The moment of inertia of the shaft is

rtd 4

J sh = P32 l ,

i46
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where p is the density of the material of the shaft and
sleeve. The moment of inertia of the sleeve 1.S

J
_ n(D4_-d4)

sl-P 32 h.

From (1 .46.1) it follows that

(l)od
41 == (I) [(D4 - d4 ) h -l-' d41],

whence

d4l d4l

U)= d4(l-h>+D4h 000 = d41+ (D4- d4)h (J)o

1

= 1+ (~-1)!!... roo'
d4 l

1.47. The potential energy of an object on the top of a
hill, mgh, transforms into the kinetic energy of transla­
tional and rotational motion:

mvl Joo2
mgh=-2-+-2-·

Replacing U) with viR, we get
mv2 Iv!

mgh=-2--t- 2Rl • (1.47.1)

The moments of inertia of the disk, Jd , and the sphere,
J sp , are

J mR2 d J 2 R2d==-2- an 9p=Sm,

respectively, with R the radius of disk or sphere. Sub­
stituting these values into (1.47.1) and dividing- by m,
we get

v2 v2
gh =2+(; = O.75v2 (1.47.2)

for the disk and
v2 v2

gh =2+ 5" == O.7v2 (1.47.3)

for the sphere. Since the left-hand sides of these equations
are the same, the final velocity of the sphere is greater,
and since the motion is uniformly accelerated, the sphere
will get to the horizontal section earlier than the disk.
Neither the masses nor the radii of the objects rolling
down the inclined planes are present in (1.47.2) and
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(1.47.3), with the result that the time it takes the objects
to roll down is independent of these quantities.
1.48. When the spacecraft goes into a circular orbit at
the perigee, it wi ll circle the earth along a low orbi t
during the second hall of the orbit. For this reason the space­
craft's potential energy at the new apogee will be lower
than at the old one and, hence, such a maneuver requires
lower kinetic energy. This menus that the spacecraft
must lower its velocity. Similar reasoning shows that
to go into a circular orbit at the apogee, the spacecraft
must increase its velocity.
1.49. The kinetic energy of a satellite is determined by
the value of the orbital (or satellite) velocity. According
to Newton's second law and the law of universal gravita­
tion,

G Mm = mv'
RS R'

where M is the mass of the earth, m the mass of the satel­
lite, v the velocity of the satellite, and G the gravitational
constant, From this it follows that the kinetic energy

mvl GMm
Wk1n =-2-=~

is the smaller the higher the orbit of the satellite.
The potential energy (we take it equal to zero at in­

fini ty)

Mm
W pot = -GIl

is the greater the higher tho orbit of the satellite. The
same is true of the total energy:

W Mm
= Wk 1n +W pot = -G2/l.

Tho angular momentum also increases as we move farther
away from the earth and is equal to

mvR=mYGMR.

1.50. Let us consider an extremely elongated orbit. In
this case the distance between the foci differs little from
the length of the major axis. Therefore, the force acting
on a space station near the apogee can be assumed to be
roughly the sarne for all extremely elongated orbits.
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Under this force the space stations move with the same
accelerations We === v2

/ R, where R is the curvature radius
of the trajectory, and v is the velocity at apogee. The
smaller the radius of curvature, the smaller is the veloc­
ity of a space station, and the greater the elongation
of the orbit, the smaller is the radius. Hence, the velocity
and therefore the kinetic energy at apogee tend to zero
and the space stations possess almost exclusively poten­
tial energy.

Since the total energy of a space station remains con­
stant in flight, at all other points on the orbit it is equal
to the SUln of the kinetic and potential energies. The
potential energy of the interaction between the earth and
the station (this energy is assumed to be zero at infinity) is

W pot == -G Mg ,
a

where Mis the mass of the earth, m the mass of the station,
G the gravitational constant, and a the distance from the
center of the earth to the station (this quantity is prac­
tically equal to the length of the major axis of the orbit).
When circling the earth along a circular orbit whose
radius R is approximately a/2, the station possesses
potential energy

Wpot"-~ -2G ~m •

As shown in the solution to Problem 1.4U, the kinetic
energy of the station in this case is

MmW k 1n ~== G-- ,a

while the total energy is

W= -G JJfnl,
a '

which lUCaJlS that it is the same HH for all elliptical orbit.
It is convenient to determine the angular momentum of

a station when the station passes through the apogee:

L = mua.

For extremely elongated orbits, a is roughly the same
for all orbits, but t.he greater the elongation of the orbit
the smaller the velocity at apogee. Hence, the angular
rnomentum at apogee is the smaller the greater the clon-
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gation of the orbit. But since the torque of the force of
attraction to the earth is zero, the angular momentum
must be the same at all points of the orbit. Hence, the
energy of the station in a circular orbit and that of the
station in an elliptical orbit coincide, while the angular
momentum is the smaller the greater the elongation of
the orbit.
1.51. The fact that the spacecraft retains its orientation
with respect to the earth means that all points of the
spacecraft move with the same angular velocity. Suppose
that the point closest to the surface of the earth moves
with the orbital (satellite) velocity according to the
equation

ro2R = G :. ' (1.51.1)

where R is the distance between this point and the center
of the earth. The point of the spacecraft farthest from the
earth moves with an acceleration 002 (R + D), where D
is the distance between the two points.

If we consider the spacecraft to be a noninertial system,
we can assume that on an object of mass m placed at the
point farthest from the earth there acts a force of inertia

F. = -moo2 (R + D).

At the same time, there is the force of gravity acting on
this object:

Mm
F=G (R+D)2.

Tho SUIll of these two forces plays the role of "weight"
for the object, or numerically the reaction of the support
exerted on the object:

Fw = mro2(R+D)-G (R~~)2 •

Bearing in mind that D ~ R, we can replace (R + D)-2
with (1 - 2D/R)/R2. Thus

Fw ~ m [ {t)2R (1 -1- ~ ) - G ~ (t- 2~ )J'
and if we allow for (1.51.1), we get

Mm 3D
Fw~GR2-11·
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Since Gll1mllZ2 is equal, to a high accuracy, to the
weight of the object on the surface of the earth, or mg,

3D
we get FW=R mg.

This expression gives the "weight" of an object in the
spacecraft at the point farthest from the earth. Assuming
that D is 2.1 ill and bearing in mind that R == 6300 km,
we find that the "weight" of an astronaut whose mass is
70 kg is 6.9 X 10-4 N at the point within the spacecraft
farthest from the earth.
1.52. The potential energy of the cornet (equal to zero
at infinity) is -GMmlr, where m is the comet's mass,
M the mass of the sun, and r tho distance between the sun
and the cornet. As the cornet approaches the sun, this
energy decreases, which means that the kinetic energy
increases, wi th

mv2 G Mm
-2-- -r-

remauung zero.* The angular momentum of the comet
is also conserved, since the torque produced by central
forces is always zero. If we take two points, one at the
aphelion of the presumable closed trajectory and the other
placed at the same distance from the sun on the second
branch of the parabola, then the potential energies at
these points must coincide (since the distances coincide),
which means that the kinetic energies at these points
coincide and so do the velocities. But, as follows from
the figure accompanying the problem, the angular mo­
mentum at the aphelion must be higher than on the
branches of the parabola, which is impossible. At the
same time, at symmetrical points both the kinetic ener­
gies and the potential energies are the same, and the same
is true of the angular momenta.

The above reasoning is true for both closed orbits
(ellipses and circles) and open orbits (parabolas and hyper­
bolas) of heavenly bodies moving in the field of a single
attraction center. The fact that both the energy conser­
vation law and the angular momentum conservation law
must he satisfied makes it impossible for a central force
to change the nature of a trajectory.

* It is assumed that the initial kinetic energy of the comet in
far-away regions of space is negligible.
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1.53. If Do is the diameter of the disk at rest, then in
the system of coordinates wi th respect to which the disk

Fig. t.53

is in motion the diameter in the direction of the velocity
will be

The same is true of the ratio of the halves of the chord
passing at an altitude y from the center:

x == X o·V 1- ~2.

Since x~ == R2 - y", we have

x2 ~ (R2 _ y2) (1 _ ~)2,

whence
·x2 y2

Rt (1 - ~2) + R2 = 1.

The moving disk appears to he an ellipse with semi-axes R
and R Vi _ ~2.

1.54. The velocity of the triangle is directed perpendic­
ularly to tho altitude, with the result that the length of
the alti tune is independent of the vclocit.y. Tho hypote­
nuse is equal to twice the alti tude (1 0 :-.~ 2h), while the
length of a side of the cquiluteral triangle is l :-:::
2h tan 30°. Thus, for the moving triangle we have I tr:': lo
and

2 ~3 h= 2h V1-~2.

Hence ~ == 0.816.
1.55. As Figure (a) accompanying this problem shows,
the world line passing through the origin at an angle e
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to the x/c axis represents the Illation of an object moving
away Irorn the observer (placed at the origin) wi til a
velocity v == c cot e. The other figures correspond to the
following cases: (b) an object moving toward the observer
with a velocity v =:::: C cot 8, (c) motion with the speed
of light, and (d) all object is at rest at a certain distance
Irorn the origin. Case (e) contradicts the main principles
of relativity theory since it represents the motion of an
object with a speed greater than that of light.
1.56. According to the theory of relativity, the kinetic
energy of a moving object is given by the following- for­
mula

W reI = moc2
( V 1 - 1 ) ,

1-~2 ,

with ~ ~ vic. In classical mechanics,

mov2
W c1= - -. 2·

Wrel = ~ ( 1 _ 1 )
Wei ~2 V1-~2 ·

Since ~ =:::: cot a, we have

Wrel 2 (1 )
WeI = cotta Vi-cot2 0 - 1 ·

At 8 = {lO°,

Wrel!Wcl =:: 1.37.

1.57. Let us aSSUJno that at t=-::::O by the clocks in both
systems, the systems were close to each other (in t.he
figure accompanying the problem this moment corre­
sponds to the origin). If one of the syst.oms sends a signal
after H t.ime j utervul 1'0 has clapscd , the second system
will receive the :-dgnal 'after a tiUIO i ut.ervul

T=-~To -V :~~ ·
The angle e corresponds to a relative velocity ~ == cot 8.
Thus,

/' 1 +cot e
T~ToV 1-cot e.'

153



1.58. 'I'he t.imo interval separating the signals rocei ved
by 1J from A is

T T .. /TIT
1== oV 1-~'

Since system C is rna vi ng toward A, its (rein ti ve) vcloci t y
is nogati ve and, hence, the signals it sends are recei ved
by A separated by Lime intervals

/
1-~

T2==To l 1+~'

System A will register N signals from B in the course of

while the signals from C will he registered ill the course of

When system A meets system C, the clock in the first
system will show

( .. /" 1+~ / 1-~) 2NTo
tB~t1+t2~NTo V 1-~ +l 1+~. == V"1-~2 ·

The clock in C will show the time that is the sum of the
time during which system A sends N signals prior to
meeting C and the ti me during which system C sends N
signals prior to meeting system B. Thus,

tc == 2Nl l

o•

The difference in the readings of the clocks will be

~t~t -t ==:2 ( 1 -1)NT.
B c V1-~2 0

The fractional variation in the duration of the signals is

tB 1
te:== Y1-~2 •

For example, at ~ == 0.6 we have

tBlte == 1.25.
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(2.1.1)

2. Molecular Physics and Thermodynamics

2.1. The buoyancy, or lifting power, is the difference
between the weight of the air ill the volume occupied by
the balloon and the weight of the gas lilling the hal loon.
According to the ideal-gas law, the latter weight i s

p pVM
==RT g ,

where V is the volume of the balloon, f) the pressure of
the gas, and M the molecular mass of the gas. Accordingly,
the lifting power is given by the formula

pVg
F= RT (Malr-Mgas),

and the buoyancy ratio is

F H 2 Ma l r - M H 2

FHe = lIf a l r-MHe·

nto Eq , (2.1.1) we can substitute the relative molecular
masses, The relative molecular mass of hydrogen is 2,
that of hel iurn is 4, and that of air we assume to be equal
to 29. Thus,

F H2 29-2
F

H e
== 29-4 === 1.08.

2.2. The root-mean-square velocity of molecules is

V= V3RT/M .

Tukiug logs, we get

1 1
logv==2 log (3R/M) +2log T.

The slope of the straight line log v vs. log 11 must be 0.5,
and the dependence of the logarithm of velocity Oil the
logarithm of temperature is given by straight line C in
the figure accompanying the problem.
2.3. Since the velocities of the molecules are elifferent,
it takes the molecules different times to fly from the slit
to the outer cylinder. Because of this the cyl inrlers rotate
through angles that are different for different molecules.
The greater the velocity of a molecule, the closer wi ll
its track be to the track for fixed cylinders.
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2.4. The position of the tracks shown in Figure (h)
accompanying the problem is possible if during the time
of flight of the molecules from the sli tin the inner cylinder
to the wall of the outer cylinder the cylinders perform
more than one-half of a full revolution (in Figure (b)
this is almost one full revolution). Of course, for this
to happen, the linear velocity of the outer cylinder must
exceed many times the velocity of the molecules, which
is practically impossible,
2.5. The number of molecules in the velocity interval
from u to v + dv is

dN == F (v) du.

Accordingly, in Figure (a) accompanying the problem,
the hatched segments represent the following quantities:
segment A represents the number of molecules whose
veloci ties do not exceed VI' or

Vt

N A = ) F (v) dv,
o

segment /1 represents the number of molecules whose
velocities arc not lower than U2 and do not exceed V3 , or

V3

N B = ) F(v)dv,
V2

and segment C represents the number of molecules whose
veloci ties are not lower than v4' or

00

N c = JF (v) dv.
1'4

In T'iguro (b) accompanying the problem, each hatched
segment represents the ratio of the corresponding number
of molecules to the total number of molecules, that is,
the probability of molecules having velocities that lie
within the specified velocity interval.
2.6. Since for each velocity interval from v to v + dv
the number of Jnoleculcs is

dN = F (v) dv
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and since F2 (v) = 2Ft (v), the total number of molecules
corresponding to distribution 2 is twice the number of
molecules corresponding to dist.ribution 1.
2.7. The number of molecules ill the velocity interval
Irorn v to v + dv is

dN ~ F (v) d».

Each of these molecules has an energy 117,02/2. All l11o]e­
cules in the velocity interval Irom PI to 1)2 have the energy

V2r mv2
W:=: J -2- F (v) d».

'VI

To find the average energy w of such molecules, we must
divide W by the number of molecules:

m
lO=2

1)2

Sv2F (v) dv
t't

1)2

5 F (v)dv
VI

2.8. According to Maxwell's law, the number of mole­
cules of a gas whose velocities lie within the interval
from v to v ~- dv is given by the formula

tiN 0= N ot/:n: ( 2:T r/2
v2 exp ( - ;~ ) . (2.8. j )

Since the most probable velocity is

vp=V2kT/m,

we can represent (2.8.1) in the form

dN = No4:n:-1/2( :prexp [ - ( :p )2J d ( ~ ) .

The distribution function F (v/vp ) then assumes the form

F ( :p )= N04:n:-1/ 2 ( ~ ) 2 exp [( - :p )2J.
For v/vp = 1 we have

F (1) == No4n-1/ 2e-1 ~ O.83No•

The F (vlvp}-to-F (1) ratio (see the figure),

F ( :D )I F (1) = (:p)2exp [ 1 - ( :p )2] .
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kT 2kT 3kT w

is the same for any number of molecules of any gas at. any
t.emperature and, therefore, is a universal function.
2.9. From formul a (2.D.1) it follows that.

1 dN
f (w) == No dw '

or
1 dN dvt (IV) ~ -N -d--d ·o V 10

Since v:-= (2zvlm)1/2, elementary transformations yield

dN = No :n (:r r/2
exp ( - :;. ) d ( :r )·

This representation is convenient since the dimensionless
ratio ,vlkT is taken as the independent variable and the

f(w)

V/Vp

Fig. 2.8 Fig. 2.9

distribution function proves to be valid not only for all
gases but also for any temperature. The function f (w)
is shown in the figure.
2.10. The total energy of the molecules of a gas is the
SUIn of their kinetic and potential energies. Assuming that
the potential energy is zero at the initial level, for any
other level we have Wpot == mgh, Since the total energy
remains constant, or wkln + Wpot ~ const , we have

Wkln + Wpot = wklno·

Hence, at a given level the kinetic energy is

wkln = wkino - mgh,

The maximal altitude to which the molecules can rise
is deter mi ned by the condition Wkln == 0, whence

h = Wklno1mg.
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By hypothesis, Wklno == (3/2) IcT: Substituting k ~ RINA
a uri ni =-~ AliNA, we get

It :~ 31l1't2Jllg.

Substituting the values of the molecular masses, we find
that at T == 300 K the maximum altitude for nitrogen
is 13.G km , for ox ygeu t LB km , and for hydrogen 191 kin.
Since the kinetic, energy of the molecules decreases as the
alt.itude grows, the "temperature" of a gas decreases, too,
but differently for different gases. Different gases have
di fferent "temperatures" at the same alti tude above sea
level. At the highest level where the molecules of a given
gas can still be found, the "temperature' of the gas is 0 K.

Note, in conclusion, that by its very meaning the baro­
metric formula, which is derived on the assumption that
the temperature of the gas is constant, is equivalent to
the statement that the Maxwellian velocity distribution
is valid. Indeed, the barometric formula leads to Boltz­
mann's formula for the distribution of molecules in po­
tential energy. The same formula can be obtained using
the Maxwell formula.
2.11. To answer this quest ion, we assume, for the
sake of simplicity, that the balloon is a cylinder with
its axis vertical and having a length h. If we denote by Po
the pressure on the lower base of the balloon, then the
pressure on the upper base is

p = Po exp (-MghIRT).

Since Mgh/RT ~ 1, we can expand the exponential and
retain only the first two terms:

p = Po (1 - MghIRT). (2.11.1)

The buoyancy is given by the formula

F = S (Po - p),

where A.~ is the base area of the cylinder. Suhstituting the
difference Po - p from (2.11.1), we get

F == MghS/RT,
or

F ~ PoMgVIRT.

The fraction PoMIRT constitutes the density of air.
PoMVIRT the mass of the air that would occu py tho
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volume of the balloon, and PoMgVIRT the weight of
this mass of air. Thus, the two explanations are equiv­
alent.
2.12. If we take two subsequent displacements, li aud
l2' during time t in which these displacements took place
the particle is displaced by l*, with

l*2 == Ii ---1- l~ --1- 2l 1l 2 cos a

(see the figure accompanying the answer), Since the dis­
placements are cornpletely random both in length and
direction, while the angle between two successive displace­
ments is independent of the displacements, we conclude,
first, that

(l~> = (l:>
and, second, that the third term is zero because all di­
rections are equally probable. Thus,

(l*2) = 2 (1:> = 2 {l:>.
One must bear ill mind that we have averaged the squares
of the displacements and not the displacements proper .

./

1·

Fig. 2.12

y

a~_+----,..__

Fig. 2.13

However, since there is a constant relationship between
the mean square and the square of the arithmetic. mean
for a definite distribution function, we can always re­
place the ratio of mean squares with the ratio of the
squares of the mean,

«l*))2 «l»2
2T =-T-

and, hence,

(Z*)==V2 (l).
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This result can be applied to any interval of time, which
makes it possible to establish the following relationship
between the displacements of a Brownian particle and the
time it takes the particle to perfOfIn these displacements:

«1»2 == const.
t

This is the main law of Brownian motion. It is also valid
for the motion of molecules ill a gas.
2.13. Any concrete path of a moleculo can be decomposed
along three arbitrary coordinate axes of a Cartesian sys­
tem, with

l2 == Ii + l~ + l:.

For each separate path these projections are, generally
speaking, different, but since the motion is chaotic and,
hence, the probabilities are the same for all three di­
rections, these projections are equal, on the average, so
that

{l~} == (l;) = {Ii>.

If we are interested in a projection along a definite di­
rection, which, like all others, is arbitrary, then we can
write

Tho relationship between the mean of a square and the
square of a mean is the same for all directions, so that
we can write

The two signs correspond to two opposite directions of
motion.
2.14. If the Bleau free path of the molecules is A, then
the probability that on a segment dx a molecule expe­
riences a collision will be dX/A. Out of the N molecules
that have covered the distance x without colliding,
N (dX/A) molecules experience collisions over segment x,
Hence, the number of molecules that have traveled
without colliding will change by

dx
dN =-_.~ ---N T.
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If N is the total number of molecules, then the number of
molecules that have traveled a distance no less than x
without colliding is determined through integration:

N x)d: = -1 d: '
o 0

or

In N == In N 0 - x/A.

Since on the vertical axis we layoff base-10 logarithms,
a and A are linked in the following manner:

A == 2.3/a.

Modern electronics possesses a number of methods for
determining the number of particles (molecules, atoms,
ions, electrons) whose path exceeds a definite distance,
which makes it possible to find the mean free path.
2.15. Since the diffusion coefficient of hydrogen is
higher than that of nitrogen, hydrogen wi ll flow from

--- ) PI

Fig. 2.15

part 1 to part 2 faster than nitrogen will flow from part 2
to part 1. For this reason, at first the pressure in part 1
drops and in part 2 it rises. But then the rate of hydrogen
diffusion lowers (since the amount of hydrogen in part 2
grows and the nitrogen continues to diffuse into part 1).
As a result, the pressure in part 2 begins to drop and the
pressure in part 1 begins to grow. The process continues
until the pressure in both parts becomes equal and the
partial pressures of the two gases in each part become
equal.
2.16. The di ffusion coefficient of the gas is

1
D == p; 'Av.
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In the closed vessel, the mean free path remains constant"
and the temperature dependence of the diffusion cooffi­
cicnt is deturruiued only by the average velocit.y of the
molecules, which is proport.iouul to the SqUHl'O ..out of
the temperature. 'rho same rolutiouship exists between
the temperature and tho d i ffusion coefticient:

D ex: T1/2.

In the open vessel, that is, at constant pressuro, the con­
ccnt.rution of molecules is i n vursoly pro port.iounl to tho
l.emperuture and, hence, the mean free path is proportional
to the tern pera Lure. Therefore, for this ease we have

D oc T3/2.

On the logarithmic scale the slope of a straight line is
equal to the exponent in the power function. Hence,
curve (a) (with tho slope equal to 3/2) corresponds to the
open vessel and curve (h) (with the slope equal to' 1/2)
corresponds to the closed vessel.

* Hero we have ignored the temperature dependence of the
effective cross section (the Sutherland correction term).

2.17. The diffusion rate, which characterizes the vari­
ation of the number dN of molecules passing through the
cross-sectional area S of the vessel per unit t ime dt in
the direction of the concentration gradient dn/dx, is

dN =:-= -D~S
dt dx •

Here D ::= (1/3) 'Au is the diffusion coefficient. Since the
diffusion coefficient is inversely proportional to the
pressure (because the mean free path is inversely propor­
tional to the pressure) and the concentration gradient at
each moment is proportional to the pressure, the number
of molecules diffusing in this or that direction is pressure
independent. This conclusion holds, of course, only if the
mean free path of the molecules is many times smaller
than''the linear dimensions of the vessel. Note that since
the i~itial number of molecules of each gas is proportional
to the pressure, the evening out of the concentrations
occurs the faster the lower the pressure of the gas.
2.18. The average kinetic energy of translational motion
of molecules is (3/2) kT. The average energy of the mole­
cules moving toward a wall of the vessel is 2kT. This Is
explained by the fact that the flux of molecules with
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a certain velocity is proportional to n ,», where no is the
concentration of the molecules having this velocity.
Therefore, the higher the velocity, the greater the number
of rnolecules moving in a given direction. lienee, in the
velocity distribution 0 r tho molecules remaining in the
vessel there appears a deficit of fast molecules, which
leads to a decrease in the average energy of the molecules
and a distortion in the distribution function. On the
other hand, the average energy of tho molecules leaving
the vessel for the vacuum becomes higher than it was in
the vessel. If the pressure of the gas is not low but the
orifice is so small that no collisions occur in it, the average
energy inside the vessel still decreases, if only this de­
crease is not compensated for by heat supplied to the
walls of the vessel. Under these conditions, the Max­
wellian velocity distribution is restored via the collisions
of molecules in the vessel, but now this distribution cor­
responds to a lower temperature. The restoration of the
distribution function occurs partially because molecules
collide with the walls of the vessel.
2.19. The heat flux is determined by the relationship

dQ _ -A dT
dt - e1.r ..

For the thermal courluct.i vit.y of an ideal gas we have the
following formula:

"A ex: v, or "A ex: Tl/2.

For the flux to he steady-state (time independent), the
following formula must hold true:

dT
A -d- -.~-= const ..x

Hence,

Tl/2 dT ~.:-. const ,
dx

Wo see that tho higher the temperaturo the lower is the
gradient. The gradient must increase from the hot plate
to the cold plate. The position of the plates can be ex­
plained by the necessity of reducing convection to a
minimum.
2.20. Under the specified conditions, we cannot apply
the concept of..temperature to the residual gas between
the walls of the Dewar vessel. 'rho mean free path of the
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molecules of the gas is about 100 Ill, so that whi lo moving
between the walls the molecules practically never collide
with each other and no thermodynamic equilihriurn,
which could be characterized by a temperature, can estab­
lish itself between the walls.
2.21. Within a broad pressure range the thermal con­
ductivity coefficient is Independent of the gas pressure.
A dependence (i.o. a drop in thermal conductlvity as the
pressure lowers) becomes not.icon ble if the mean free path
of molecules becomes compurable to the distance between
the walls between which the heat transfer occurs. 'I'he
greater this distance, the greater tho mean free path (and
tho lower the pressure) at which the thermal conductivity
coefficient begins to change. Therefore, curve 1 corre­
sponds to the greater distance (see the figure accompanying
the problem).
2.22. Section 1-2 in Figure (a) accompanying the prob­
lem corresponds to isobaric heating, section 2-3 to

fD 2 /1\1 2~. 3

4 1 2 1 4

T V V

v

"D
j v

~r,/2 1

10 3
3

1 7. 1 2
I

T T
(n ) ~ b) (c)

!"ig. 2.22

isothermal ex pa nsion, section 3-4 to isochoric cooling,
and section 4-1 to isothermal compression. In the p 1'­
and VT-coordinates this process is depicted in Figure (a)
accompanying the answer. The processes depicted in Fig­
ure (b) accompanying the problem proceed in the Iollow­
ing order: 1-2 is isobaric heating, 2-3 isothermal C0111­

pression, 3-4 isobaric cooling, and 4-1 isothermal ex pan-
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sion. In the ])V- and pT-coordinates this cycle is depicted
in Figure (b) accompanying the answer. Tho cycle de­
picted in Figure (c) accompanying the problem consists
of Isochoric heating 1-2, isobaric heating 2-3, isothermal
expansion 3-4, and isobaric cooling 4-1. In the p V- and
VT-coordinates this cycle is depicted in Figure (c) accom­
panying the answer.
2.23. When the piston moves upward by ~x, the spring
is compressed by Sh, Suppose F == -k~h is the elastic
force produced in the spring by this compression. This
force contributes to the force acting on the piston and,
hence, increases the pressure of the gas in the cylinder by

~p==~== k~h =: k~V
S S 8 2 '

where S is the surface area of the piston. Thus, the in­
crease of the gas volume caused by heating is accompanied
by a proportional increase in tho pressure. On the dia-

p

P, -

Fig. 2.23

Pz

v
Fig. 2.25

gram this is depicted by a straight li no wi th a posi ti ve
slope whose value depends on the surface area of the piston
and the clastic properties of the spring. The work is
measured by the hatched area in the figure accompanying
the answer and is

A == (PI + P2) (V 2 - V1)/2.

2.24. The adiabatic p-V relation is of the form

pVv = const,



where the ex ponent v is the ratio of the specific heat ca­
paci t y of the gas at constant pressure to the speci ftc hca t
capacity of the gas at constant volume:

y = epic".

This ratio can he expressed in terms of the number of
degrees of freedom, i. A helium molecule has three de­
grees of freedom and that of carbon dioxide has six. There­
fore, for helium we have y == 5/3 == 1.67 and for carbon
dioxide we hava v == 8/6 = 1.33. The greater the expo­
nent, the steeper is the curve. The upper curve (see the
figure accompanying the problem) corresponds to carbon
dioxide and the lower curve corresponds to helium.
2.25. An adiabatic curve is steeper than an isotherm
(see the figure accompanying the answer), with the final
pressure being lower in the adiabatic process than that
in the isothermal process. This means that the area lying
below the appropriate curve (this area characterizes the
work) is smaller for the adiabatic process than for the
isothermal.
2.26. The first law of thermodynamics for an isothermal
process can be written in the form Q == A. Hence, the
straight line corresponding to this process must be in­
clined at an angle of 45° to the horizontal axis (curve 3
in the figure accompanying the problem). For an isobaric
process we have

Q == I1U + A.

Since the work for one mole of the gas done in an isobaric
process is

A === R~T

and the amount of the absorbed heat is

'f i+2Q =-= Cp ~t =-= -2- R~T,

with i the number of degrees of freedom, we have

A 2
Q i+2·

The slope of the straight line representing the A vs. Qde­
pendcnce must equal 2/5 for a rnonatomic gas, 2/7 for
a diatomic gas, and 2/8 for a multiatomic gas. Straight
line 1 corresponds to a multi atomic gas and straight line 2
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to a monatomic gas. Work is not performed in an iso­
choric process, and this coincides wi th the horizontal
axis, while heat is not absorbed in an adiabatic process,
and this coincides with tho vertical axis.
2.27. Processes depicted by straight lines coinciding
with the coordinate axes are quite obvious. The horizontal
axis (I1T == 0) reproson t.s an isotherm al process and the
vertical axis (Q == 0) represents an adiabatic process.
The molar heat capacit.y of a mo uatomic gas involved
in an isochoric process is

cV =.7.: (3/2) R,

and that of a diatomic gas is

Cv = (5/2) R.

The molar heat capacity of a monatomic gas involved
in an isobaric process is

C]> = (5/2)R,

and that of a diatomic gas is

Cp = (7/2) R.

The heat capacity Cv of a diatomic gas coincides with
the heat capacity Cp of a monatomic gas. For this reason
there are three straight lines in the figure accompanying
the problem instead of four, with straight line 2 corre­
sponding to C p of a monatomic gas and C v of a diatomic
gas. Straight line 3 corresponds to an isobaric process
involving a diatomic gas and straight line 1 corresponds
to an isochoric process involving a monatomic gas.
2.28. For the sake of brevity we denote (m/M) .R by a.
Then

pV ~ a1'.

For both gases the work performed in an iso baric process is

while that performed in an adiabatic process is
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Substituting the values of y IOJ' nitrogen (7/5) and argo n
(5/3), we got

A ==-= 2.5 I ~T I (for ni trogen),

A === 1.5 I 81' I (for argon).

Selecting the scales on the coordinate axes of the figure
accompanying the problem in such a manner that a ~::: 1,
we find the slopes of the straight lines to be 2.5 and 1.5
for the adiabatic processes and 1 for the isobaric process.
The straight line 1 depicts the adi abat.ic process involving
nitrogen, the straight line 2 depicts the adiabatic process
involving argon, and the straight line 3 depicts the iso­
baric process for both gases. Tho vertical ax.is (I ~ 7' 1~ 0)
depicts an isotherm and the horizontal axis (A ~ 0) an
isochor.
2.29. The classical theory of heat capacity does not
allow for the quantum nature of periodic motion (vibra­
tional and rotational). According to quantum theory, the
angular momentum of a rotating object may aSSUJnc only
values specified by the condition

J (I) == n'V Y{j-=1~ , (2.29.1)

where Ii is the Dirac-Planck constant (the Planck con­
stant h divided by 2n), J is the moment of inertia of the
object, and j is the so-called rotational quantum number,
which can take on any integral values starting from zero.
Equation (2.29.1) enables finding the possible values of
the rotational kinetic energy:

J CJ)2 1i2
W ~ -2-= 21 j(i+ 1).

The minimal nonzero value is

WIn = tt2/J .

A molecule acquires and exchanges rotational energy
through co ll'isious with other molecules. Thus, the question
of whether a molecule can have rotat.iouul energy in
addition to translational is solved by comparing the
value W m of the minimal nonzero rotational energy with
a quantity of the order of kT at r00111 temperature. The
separation of atoms in a hydrogen molecule is 0.74 nrn
and the mass of each aLOIn is 1.67 X 10-27 kg, so that
the moment of inertia of a hydrogen molecule is 4.6 X
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1(J-4~ kg-UI 2 • Heuring in mind t.hat h. ~ 1.05 X
10-34 J -s, we get

H/(u == 2.4 X 10-21 J.

At roo m temperature (T ~ 300 K),

kT == 4.1 X 10-21 J.

The fact that kT somewhat exceeds Wn l tnakes the occur­
rence of rotational motion in a molecule quite probable.
lIenee, the rotational degrees of freedom will contribute
(,0 the heat capacity of hydrogen. At temperatures of the
order of 40 K the probability of rotational motion is
practically nil; it is said that the rotational degrees of
freedom "freeze out" and only the translational degrees
of freedom remain, which is reflected in the value of the
heat capacity. The diatomic gas that is closest to hydrogen
in the Periodic Table is nitrogen, and the mass of a ni­
trogen atom is fourteen times the mass of a hydrogen
atom. The separation of the atoms in a nitrogen atom Is
0.'11 nm. Accordingly, the moment of inertia of a nitro­
gen molecule is thirty one times that of a hydrogen mole­
cule, so that down to very low temperatures the value
of kT is considerably higher than Wm and there is prac­
tically no "freezing out" of rotational degrees of freedom.
At the same time, for monatomic gases, whose moment of
inertia is several orders of magnitude lower than that of
hydrogen, the minimal energy of rotational motion
is so high that even at very high temperatures only the
translational degrees of freedom manifest themselves and
the heat capacity follows the predictions of classical theory
quite accurately.
2.30. According to classical theory of heat capacity of
ideal gases, the value of heat capacity for each given
process (say, an isochoric process) must not depend on
the temperature of the gas. This theory does not allow for
the quantum nature of periodic processes, namely, rota­
tional and vibrational motion. In classical theory, the
probability of rotational motion of diatomic and multi­
atomic molecules is assumed to be independent of the
temperature of the gas and the same (per each degree of
freedom) as that of translational motion. Quantum theory
requires allowing for tho different probabilities of periodic
processes, with the probability growing with temperature.
Calculations have shown that for many diatomic gases at
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low tern peratures the vibrational degrees of freedorn can
be ignored, but the role of these degrees of freedom grows
with temperature. For sufficiently high temperature the
bonds between the atoms may break and dissociation
occurs. This requires large energy expenditure. In some
respects this process resembles phase transitions (melting
and boiling, for instance), when supplying heat does not
lead to a rise in temperature.
2.31. The compressibility is defined by the following
formula:

~= - : ~:.
III an isothermal process,

d (pV) === pdV + Vdp

and, hence, (3 == ilp. In an adiabatic process,

ypVV-1dV + VVdp == 0

and, hence, ~ == 1/yp.
In all cases the dependence of the cornpressibi li ty on

pressure is depicted by hyperbolas that differ only in

1°9]3

.'ig. 2.31

6 V

~"ig. 2.32

a numerical factor. On the log-log scale the pressure de­
pendence of the compressibility is depicted by straight
lines (in the figure accompanying the answer the straight
lines correspond to adiabatic processes in' olving argon
and carbon dioxide and to the isothermal process).
2.32. In the figure accompanying the answer the pro­
cesses are depicted by broken lines 1-3-2 and 1-4-2. In
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(ad iabatic process).

tJ1(-~ nr'sl ease, the work is measured hy tho area hounded
hy the broken Jine5-4-2-()', whi Io in the second it is mea­
sured by the area bounded hy the hroken line 5-1 -3-(j and
exceeds the first area by the area of 4-1-3-2-4. Since in
both cases the initial states (1) and the final states (2)
arc the same, the increment of internal energy is the
HarHC, too, but the process 1-3-2 requires additional heat
for tho system to pcrforiu gTca tor work. Since entropy is
a Iuuctiou of st.ate , the chaugo or entropy in hoth cases is
t.he s.uue.
2.;i3. 'rho three quuutit.ies r lrarnctcrizi ng the state of
311 ideal gas, [J, V, and 1', (Ire linked through power re­
lationships fur a ll processes involving an ideal gas:

l' /1' =::. const (isohatic process),
pl T _:.... const (isochoric process),

p~1 =--= const (isothermal process),

f.J Jlv ~-- cons t }

1" 1" n» - 1) _ - eon s L

pi l 'V!(V .- 1) :=.:. COUH L

logY

log T

4

(u)

10gp

On t.he log-log scale all these processes are depicted by
straight lines that differ 111 their slopes. Isothermal

expansion is depicted
by a vertical straight
line in the downward
direction in the pT­
coordinates and in the
upward direction in the
l/l'-coordinates. An adi­
abatic processis depicted

logT hy ;.1 straight line with
(b) a slope Y/(V - 1) in the

pl'-COol'dillatcs and hy
a ~I raight Ii no wi th a

negative slope -(" - 1)-1 in 1he l/T-c.Ool~dillat,es. A co llec­
tio n of such straight Hegillell(.s rail he used to depict tho
Carnot cycle in the pT-eoordinates (Figure (a)) and in the
VT-eoordinates (Figuro (b)).
2.34. The incromunt of the cntro p y ill a process is given
by the formula

A/)~ ~-== I1QI']' ,
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T

Fig. 2.3;'

302

4 1

The straight line 0-1 in the figure accornpnnying the
problem corresponds to an Isothermal process, since it is
parallel to the vertical axis (1' -.== const). 'rho straight
line 0-4 depicts a process in which the entropy does not
change, that is, a process ill which 110 heat is supplied
to or removed from the system, or an adiabatic process.
Out of curves 0-2 and 0-3 the former corresponds to a
higher entropy increment. The process represented by
this curve wilJ require a larger amount of heat for bringing
the system to a given temperature than the process rep­
resented by curve 0-3 will require for bringing the system
to the same temperature. Of two processes, the isochoric
and the isobaric, the latter requires more heat to perform
work on the system. Thus, curve 0-2 corresponds to an
isobaric process and curve 0-3, to an isochoric.
2.35. The first process in the Carnot cycle is isothermal
expansion. In the process the gas absorbs heat and its
entropy increases. On the diagram
this process is shown by the straight
line 1-2. This is followed by adia­
batic expansion, which is accom­
panied by a drop in temperature.
Since in an adiabatic process the
gas is thermally isolated, the en­
tropy cannot change, which is rep­
resented by the straight line 2-3. At
the temperature achieved at the
end of this process the third process begins, namely , iso­
thermal compression, in which the gas gives off heat and
its energy decreases (the straight line 3-4). The final pro­
cess is adiabatic compression, which returns the gas to
the initial state. The entropy does not change in this last
process, just as in adiabatic expansion. The process is de­
picted by the straight line 4-1.
2.36. If In is the mass of each object and cis the specific
heat capacity, then the total entropy increment is

'1'2 Tl

\
-. dQ r dQ (T T )

i1.S= . T-+- J T,em In r;+Inr; ·
'j'1 '1'2

Replacing T with (T} + T2)/2, we can write

~S ~-= em In (T 1 + T 2) 2
4T1TIJ
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or

AS-co ASj + !iS2 --= em In [ (T~;:::)2 + 1 ] .

The expression in square brackets is greater than uni ty,
with the result that

tJ,S > o.
2.37. The entropy increment in the process is

dS === 8QfT == ct1T/T. (2.37.1)
According to the figure accompanying the problem,

dB = a dT. (2.37.2)

The straight line in the figure passes through the origin
since by the Nernst heat theorem the entropy at T == 0
is zero. Combining these two equations, we get

a dT == c dTfT and c === aT.

The heat capacity changes in proportion to the tempera­
ture, just as entropy does.

This result can be obtained without carrying out cal­
culations, solely on dimensional grounds. Entropy (irre­
spective of whether we are speaking of the entropy of the
system or the molar entropy or the specific entropy) has
the same dimensionality as heat capacity (irrespective of
whether we are speaking of the heat capacity of the system
or the molar heat capacity or the specific heat capacity).
For this reason the dependence of heat capacity on tem­
perature must be the same, to within a constant factor,
as the dependence of entropy on temperature. In the case
at hand the constant factors coincide, too.
2.38. The entropy increments on different segments are

T2

ss 1-2 = Cp )1~T 0= cp In ~: = cp In ~: I

T~

~S1-3 ==cv r dT ~cv In Is:.: -Cv In..E!...=:: -In ~,J T T 1 e« P..
1'1
T ..

!iSH=c p \ ~; =cpIn ~: =cpIn ~: =cpIn ~: I

f3

T2

ss10-2 = CIT )4 dJ = CIT In ~: 07C Cv In :: .
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If we add all four quantities, we get

t1S 1-3-/.-;l-'-' t1S 1-3 -I t1S3-d-- t1S~-2 = Cl' In ~: =- t1S1-2,

v
Fig. 2.39

which is what we set out to prove.
2.39. For the sake of making the calculations shorter,
let us select the mass in such a manner that in the approp­
riate system of units (m/M) R ==: 1. In this case the tem-
perature of the heater, which p
is the highest temperature Pz
in the cycle (point c) is

Th == P 2V2°
P1

The temperature of the cooler
(the coldest point in the cycle
is point a) is

r; = PIV)O

The temperatures at points band dare P2 VI and P1l
l '2 '

respectively. The entropy increment for the heater in the
a-b process is

and in the b-c process it is

j), S __ CpP2 (V 2 - V1)
.. b-e - P2V 2 ·

The entropy increment for the cooler in the c-d process is

~S == + cvV ~ (P2- PI)
~d PIV1 '

and in the d-a process it is

~S == + CpPl (V 2 - VI)
rl-a PtV I •

Adding all these entropy increments and carrying out the
necessary transformations, we get

ss =-= cv (P2 - PI) [ VV2 - VV1 ]
PI 1 P2 2

+c//(Vz-Vt ) (~1 - ~2)'
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Fig. 2.40

All the differences in the brackets are positive, and hence

~S>O.

The entropy increment for H gas performing a cycle aud
returning as a result to the initial state is equal to zero.

2.40. If we solve the van
der Waals equation for p,
we get

m RT a
u> M (V --II) -~.

This equation is of a hyper-
v bolic nature, and because

of this it must have a
branch in the third quad­
rant, which contains, at a
su Ificiontly low tempera-
ture and a negative pressure,

the third root. Since this root corresponds to a neg­
ative volume, it has no physical meaning and is
usually not depicted on diagrams. Note that Boyle's law
also contains an "extra" root. It also lies in the third
quadran t and for this reason has no physical meaning and
is llSUH lly not depicted on diagrams.
2.41. Tho van del' Waals equation presupposes complete
hornogeneity of the substance (vapor or liquid), that is,
the same densi ty in all (however small) volumes. In real
media, however, there are fluctuations. Suppose we are
considering state 2 on the curve (see the figure accompany­
ing the problern). The parameters of this state (or point)
determine the average values of the concentration and
energy of the molecules, In small volumes the values of
the concentration are somewhat larger or smaller than
the average value because of the randomness of molecular
mot.ion. The same is true of the energy of molecules in
small vo lumes, In accordance with tho isotherm, in
volumes of higher density the pressure is somewhat lower
than the average, while in volumes of lower density the
pressure is somewhat higher. 'Therefore, in the former the
density continues to rise and in the latter, to drop. As
a result the entire substance separates into two phases
with a higher and a lower density, and the pressure in
both is the same, 'rho greater density is that of the liquiJ
and the lower is that of the saturated vapor of this liquid.
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Fig. 2.42

2.42. Section 2-3 corresponds to supersaturated vapor.
For this state to realize itself, there must be no d list,
ions, or aerosols in the space where this state occurs for
the vapor to condense 011 and form drops of liquid. Sec­
tion 6-5 corresponds to the so-called superheated liquid.
This state can be arrived at if we boil and degasify the
liquid prior to heating it, then heat it in such a way so
that it Iills the entire volume of the vessel, and finally
cool it again. The liquid wi ll find i t.sclf under a pressure
that is lower than that of tho
saturated vapor. Especially
interesting is the stale of a
liquid corresponding to the - - - -J
section of the isotherm lying 750p>O .-- mmHg
below the horizontal axis
(see the figure accompanying
Problem 2.40). This state
corresponds to uniform stretch­
ing of the liquid. The slate
can be achieved by repeat­
ing, say, Torricelli's experi­
ment in modern vacuum conditions. Before frlling the
tube with mercury, all gases must be evacuated from the
tube via prolonged heating and the mercury must be
pumped into the tube under a vacuum. In this case there
is no Torricellian vacuum above the mercury when we
turn the tube over, the mercury sticks to the inner surface
of the tube thanks to molecular adhesion, and the part
of it lying above the level corresponding to atmospheric
pressure will be under negative pressure (see the figure
accompanying the answer). Thus, it is possible to obtain
negative pressure (uniform stretching) of the order of
three atmospheres.
2.»43. We use the reductio ad absurdum proof. In Fig­
ures (a) and (b) accompanying the answer we have two
variants that differ from the variant shown in the figure
accompanying the problem. In each of these variants the
arrows show a cyclic isothermal process. As a result of
each of these processes, useful work is done (the amount
of this work is equal to the hatched area) with an effi­
ciency of 100 % thanks to complete utilization of the
heat received from the heater, which of course contradicts
the second law of thermodynamics and, hence, is impos­
sible. If we assume that the hatched areas in the figure
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accompanying the problem are the same, the works done
along the paths 2-4-6 and 2-3-4-5-6 are equal. But doesn't
this contradict the second law of thermodynamics, that
is, can a cyclic process along the path 2-4-3-2 be per-

\

~o.) (b)
v

Fig. 2.43

Vvap

Fig.~_2.44

PVQP - --f-'---...

formed? One must bear in mind that while points 2 and 6
correspond to a single (i.e. the same for both curves)
one-phase state, point 4 corresponds to two different
states, a one-phase state on the theoretical curve and a two-

phase state on the experi­
mental curve. The entropies
of these two states are di ffer­
ent, and so are the internal
energies of these states, ener-
gies related to the interaction
between the molecules.
2.44. Suppose that under the
piston there is a liquid and

v its saturated vapor, whose
pressure is counterbalanced by
the external pressure. If heat
is supplied to the liquid' iso­

thermally, the liquid evaporates and the piston rises.
'I'he work done by the vapor when the vapor increases
its volume by L\V is given by the formula

A = Pvap~V,

where Pvap is the pressure of the saturated vapor. If at
the beginning 'there is only liquid whose volume is V1tq
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and at the end only vapor whose volume is VYap' the
entire work done during evaporation is

A = Pvap (V yap - Vll q) ·

This work is measured by the area bounded by the hori­
zontal section of the isotherm, the horizontal axis, and
the segments Irorn 0 to Pvap at Vl1Q and Vv ap-
2.45. As the pressure is raised from the atmospheric to
the test pressure, a liquid or gas accumulates energy,
which is equal to the hatched area under the curve. If

l.i quid
(Q)

v

Fig. 2.45

(b)
v

the cylinder or pipe fails, only a small fraction of the
energy is liberated by the liquid (Figure (a)) because of
the small compressihilities of liquids, and the pressure
falls to the atmospheric practically immediately. In the
case of a gas the accumulated energy may be extremely
high (Figure (b)) and the consequences of its liberation
may be catastrophic.
2.46. When a liquid is heated, its density drops, so
that the volume it occupies may increase notwithstanding
evaporation. The decrease in the density of the liquid
and the simultaneous increase in the density of the vapor
lead to a drop in surface tension. As a result the meniscus
becomes flatter and at the critical point disappears com­
pletely. Of special interest is the phenomenon of critical
opalescence, discovered by T. Andrews in 1869, which
consists in the medium becoming suddenly "cloudy" at
the critical state. This phenomenon serves as a vivid
illustration of fluctuation effects. Extremely small fluctu-
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Fig. 2.48

ations in the density of the medium, fluctuations that
are due 1.0 the random movements of molecules, lead to a
situation in which the density in some microscopic vo l­
umes becomes, at certain moments, somewhat higher
than the one corresponding to the critical point, and
these volurnes transform into the liquid, while the neigh­
boring vo lumes remain being a gas (the ones with the
lower density). In subsequent moments this situation
may change. In this sense the entire volume filled with
the fluid consists of constantly changi ng liquid-gas i nl.er­
faces on which the light is scattered.
2.47. When a liquid is evaporating, energy is constantly
required for performing work against external forces (the
external heat of evaporation) and against the forces of
cohesion between the molecules (the internal heat of
evaporation). When a liquid is evaporating adiabatically,
the energy necessary for evaporation is taken away from
the internal energy, whence the liquid cools off. This
decrease in internal energy may be so great that the re­
maining liquid rnay transform into the solid state. Even
if the heat insulation is not perfect, cooling may still be

considerable. This property, for

Q)
one thing, is employed in some
types of commercial and house
refrigerators.
2.48. A drop has only one spher­
ical surface while a bubble has
two, the inner and the outer,
whose curvatures are almost the

same in magnitude but opposite in sign. For this rea­
son the two surfaces of a bubble create excess pres­
sure directed toward the center of the bubble. Thus,
the excess inner pressure in a bubble is approximately
twice as large as in a drop (of the same radius).
2.49. The excess pressure inside a bubble is determined
by the formula

~p == 4a/r,

where r is the radius of the bubble, and a is the surface
tension. Because of this the pressure inside the smaller
bubble is greater and the bubble contracts, while the
larger bubble grows. Equilibrium is attained when the
film of the smaller bubble forms a surface near the outlet
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of the pipe with a curvature radius that coincides with
the one of the larger bubble.
2.50. The vapor pressure above the convex surface of
a liquid is higher than that above the flat surface, with
the corresponding difference being the greater the smaller
the curvature radius of the surface.* Hence, for the
smaller drop (Figure (c.)) the vapor is unsaturated, while
for the greater drop (Figure (a)) the vapor is supersaturat­
ed. Drop (a) evaporates, while drop (c) grows. The equi­
Iibrium of drop (b) is unstable, since if the size somewhat
decreases, the drop begins to evaporate, whi le if the size
increases, the drop grows.

* The excess pressure is determined via the Thomson formula

~ __ p\,apM(T
P - RTpr '

where fJvap is the vapor pressure above the surface, ill the
molecular mass (weight), R tho uni versal gas constant, T the
temperature, a the surface tension of the liquid, r the density
of the liquid, and r tho curvature radius of the surface.

2.51. The curvature of the surface of a liquid creates an
excess pressure (known as Laplace pressure) directed
toward the center of curvature. This pressure is the higher
the smaller the radius of curvature of the surface. In the
case of water, the excess pressure (negative) tends to
stretch the drop, while in the case of mercury it tends to
compress the drop. For this reason, the plates with the
drop of water between them arc under forces that bring
them together C'attractive forces"), while the plates with
mercury between them tend to move apart ("repulsive
forces"). .
2.52. Tho excess Laplace pressure, caused by the curva­
ture of the Ii quid surfnco , is directed toward the center
of curvature of the surface and is inversely proportional
to the radius of curvature. For this reason, the drop of
water is under a negative pressure (that in absol ute value
is greater than the pressure acting on the mercury drop)
in the narrow part of the pipe and this pressure is directed
toward the tapered end, with the result that the drop tends
to move toward the tapered end. In the case of mercury,
the pressure is directed in opposition, that is, toward the
wide end of the pipe, and it is in this direction that the
drop tends to lUOVC.
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2.53. Surface tension (the surface tension coefficient) is
defined as the ratio of the free energy of the surface layer
of the liquid to the area of this surface. The free energy
here is understood to be the energy that can be converted
into work. This energy is determined by the interaction
of the molecules of the surface layer with the other mole­
cules, where the interaction with the molecules of the
vapor above the surface is usually ignored. As the tem­
perature is increased, the interaction of the molecules of
the surface layer with the molecules in the bulk of the
liquid weakens and that of the surface layer molecules
with the vapor molecules grows. At the critical tempera­
ture both interactions become equal, the interface be­

tween liquid and vapor disap­
pears, and so does surface tension.
Thus, it is curve 2 that reflects
the correct temperature dependence
of the surface tension coefficient.
2.54. If we assume that the water
wets the wall of the tube in an
ideal manner, then, if the tube is
sufficiently high (h > ho) , and the

Fig. 2.54 dia~eter of the tU.be is .small, the
radi us of the menISCUS IS equal to
that of the tube. If h < h o' the

water will rise in the tube and reach the upper end. After
this the curvature of the meniscus will decrease until it
reaches a value that satisfies the equation

20h---­-- pgR '

where R is now not the radius of the tube but the radius
of curvature of the meniscus, r < R.
2.55. Although the cross-sectional area of all four pipes
of diameter D/2 each is equal to that of one pipe of ra­
dius D, the volume flow through these pipes is lower.
This follows from Poiseuille' slaw

1t~pD4

Q==- 128'Tl l •

Thus, the volume flow through each of the four pipes of
D/2 diameter is lower than that through the big pipe not



by a factor of four but by a factor of 16 (at the same pres­
sure head), with the result that the total volume flow
through the four pipes will be one-fourth of the flow
through the big pipe.
2.56. The transverse distribution of velocities in the
flow of a viscous liquid in a horizontal pipe is determined

y/R

0.8

0.4 0.8 12

(b)

0,4

(0)

Fig. 2.56

via the formula (Figure (a))

Ux = Ux m [ 1 - ( ~ rJ.
The radial coordinate y is reckoned from the pipe's axis.
The time it takes the particle to fall from the wall to
a point whose ordinate is y is

t = (R - y)/vY •

In the course of this fall tho particle will be shifted in the
horizontal direction ovor a distance

At the lowest possible point (y = -R) we have

x=! Vxm R =.! Vx m D.
3 Vy 3 Vy
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Tho shu pc of the particle's trajectory ill Figure (b) is
represented in dimensionless coordinates, ylR and (xlR) X
(vylv x m) .

2.57. Each figure accompanying the problem contains
the initial segments of the graphs representing the cooling
of water or the heating of ice. Continuing these graphs, we
arrive at the intersection point in each figure. If the point

t~C t~C
t~c

80
80 80 I

/
/

40 /
/

/
/

--0 --{- - -- -
\
\

-40 -40 \
\

-80 -30 ·80
Q Q

(0 ) (b) (C)

Fig. 2.57

of intersection lies above the horizontal line corresponding
to a temperature of 0 °C, the final temperature is positive,
when the point lies below this line, the final temperature
is negative. If the graphs meet on the line t == 0 °C,
the final temperature is 0 °C and the amount of the phase
that has a horizontal section on the graph prior to inter­
section will decrease. The ratio of the length of this sec­
tion to the total length of the horizontal section corre­
sponding to this phase determines the fraction of the
i ni tial mass of this phase that has transformed into the
other phase. When analyzing the graphs, we must bear
in mind that the slopes of tho straight lines are determined
by the mass of water or ice and their speci lic heat capacity
hy tho Iormula

/~t

~Q em

Here one must bear in mind that the specific heat capacity
of water is twice as high as that of ice. The length of the
horizontal sections corresponding to the water freezing
or the ice melting is determined by the fact that the
amount of heat required for melting a certain amount of
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ice is equal to the amount of heat required for heating
the same mass of water to 80°C. For the sake of illus­
tration, Figure (a) accompanying the answer shows the
diagram for the cooling off of a mass of water from 80
to 0 °C, then the freezing of this water, and finally the
cooling off of the ice down to t == _40°C. Figure (b)
accompanying the answer shows the reverse process in
which the same amount of ice is heated from -80 to 0 °C,
then melted, and finally heated in the form of water to
60°C. The scales along the horizontal axes are arbitrary
but equal, with the amount of heat expressed in arbitrary
units. (It is easy to see that all this has no effect on the
answer.) The two diagrams are combined in Figure (c)
accompanying the answer. In the present case we see
that the final temperature is 0 °C and half of the ice has
melted. Applying this procedure to the case illustrated
by Figure (a) accompanying the problem, we see that
the ice has completely melted and the final temperature is
10°C; for Figure (b) accompanying the problem, half of
the ice has melted and the final temperature is 0 °C; for
Figure (c) accompanying the problem, the case is similar
to (b) but half of the water has frozen; finally, for Pig­
ure (d), all the water has frozen and the final temperature
is _20°C.
2.58. At the lowest possible pressures and the highest
possible temperatures a substance may exist only in the
vapor state (region 1). Compressing the vapor at relatively
high temperatures, we can transform it into the liquid
state provided that the temperature is below the cri tical ,
The curve separating region 1 from region 2 corresponds
to pressures and temperatures at which the liquid is in
equilibrium with the saturated vapor of this liquid, with
the region 2 corresponding to the liquid. T cr on the tem­
perature axis st.ands for the critical t omperature. By
cooling the liquid, we arrive at temperatures at which
there is equi libr! UIn between the liquid and the solid
phase-this corresponds to region 3. At 10'" pressures
there can be equi lihrium between the vapor and the solid,
but there is only one value of temperuture and pressure
at which equilibrium can exist between all three phases.
This is the so-called triple point, and it is at this point
that all three curves meet.
2.59. As distinct from the majority of substances, the
ice-water system has an equi libriurn curve with a negative
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slope. In view of this, higher pressures correspond to a
lower temperature at which ice and water are in equi­
librium. If ice was under an external pressure PI at a cer­
tain temperature and then this pressure was increased to
P3' then at a certain pressure P2' whose value lies on the
phase equilibrium curve, the ice will melt. The anomalous
dependence of the melting point of ice on pressure is
linked with the anomalous relation between the densities
of water and ice. As a rule, the density of the solid phase
is higher than that of the liquid, but for water the situ­
ation is the opposite: the density of ice is lower than that
of water. This property is extremely important for the
preservation of life in ponds, lakes, and rivers. If the den­
sity of water were lower than that of ice, all ponds, lakes
and rivers would freeze solid.
2.60. Cornprcssibility is defined thus:

1 dV
~== -VdP'

whence dV/V == -~ dp. Hence,

V2 ])2

.~ ~ =-J~dp.
VI J'l

I ntegration yields

Jl2

In (V/V:J = J~ dp.
r1

The integral on the right-hand side gives the area bounded
by the curve, the horizontal axis, and the vertical straight
lines at PI and P2. After evaluating this integral, we turn
to the volume ratio. If the compressibility were pressure
independent, the volume ratio would be

2.61. At a maximum point the derivative dp/dt is zero.
For this reason near a maximum the deviations in the
density from the maximum value for small deviations in
the precision with which the temperature is measured are
at a minimum, with the result that in the neighborhood of
the maximum the precision with which density is deter­
mined is the highest.
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2.62. As is known, the heat flux is determined by the
equation

dQ . dT
(ft= -)" dx S.

Assuming that the heat flux is steady-state and, hence,
dQldt is the same at all points of the wall, we find that
where the absolute value of the gradient dT/dx is greater,
the respective thermal conductivity coefficient is smaller.
Hence, the inner layer of the wall has a higher thermal
conductivity.
2.63. To elongate the rod by ~Z, we must apply, accord­
ing to Hooke's law, the force

F= RS st.
1

(2.63.1)

The work of elongation performed from x to x + I1x is

ES
dJl == J/ dx == -z- x dx,

and the work performed from 0 to liZ is

A = ;~ (lil)2.

Multiplying the numerator and denominator by land
introducing the notation

I1l/l = e

(the strain, or extension per unit length), we get

A RSl 2
==-2- 8 .

The performod 'York goes to increasing the in ternal energy
of the rod, that is, the energy of elastic deformation.
Dividing this energy by the volume of the rod, we get
the bulk energy density

w == Ee}/2.

From (2.63.1) it follows that

Ee = F/S = 0',

where a is the internal mechanic.al stress. For this reason,
the bulk energy density can be represented as

W == oE/2.
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2.64. For each bar the thermal linear strai n is

~lll == a~T,

while the mechanical linear strain is

Slll == -alE,
where a is the internal mechanical normal stress (Young's
modulus), which is the same for both hars. The sum of the
two strai ns is zero:

a~T - alE == O.

Hence, aE' == 01 ;).T. Since the right-hand side is the same
for both bars, we can write aIEl =--= a Z·E2 , or

a1/a2 ::-:::: E 21E1 •

If the walls possess the sarne mechanical properties, the
deformabilit.y of the walls has no effect on the result.

3. Electrostatics
3.1. 'I'he components of the electric field strength that
are generated by the charges at the acute angles are equal
and are directed toward the negative charge. If we denote
the length of the hypotenuse by 2a, each of these compo­
nents is QI4nEoca

2 and the sum is Ql2rteoea
2 • The corn­

ponent of the electric field strength generated by the
charge -1-2Q is the same, It is directed at right angles to
the hypotenuse away from the right angle. The resultant
fi eld strength is directed parallel to the leg connecting
the charges +2Q and -Q along vector 3.
3.2. Since in the case at hand all the electric field vec­
tors lie on a single straight line, the vector sum may be re­
placed with the scalar sum. For unlike charges the di­
rection of the resultant vector does not change while for
like charges it does. In the ease illustrated by Figure (a),
the electric lield strength is positive everywhere. Allowing
for the signs specified in the problem, we conclude that
the left charge is positive and the right charge is negati ve.
Similatly, for the case Illustrated by Figure (c), the left
charge is negative and the right charge is positive. In
Figures (b) and (d) the electric field strength changes its
sign at the midpoint of the distance between the charges.
Obviously, this can only occur if the charges are like.
Bearing in mind the aforesaid and allowing for the rela-
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tionship between the direction of the electric, field vector
and the sign of the charge generating the field, we con­
clude that for the case depicted in Figure (h) hoth charges
are positive, while for the case depicted in Figure (d)
both charges are negative.
3.3. Since both electric field vectors lie on a single
straight. line, they can be added algebraically, just as we
did in the previous problem. The electric field strength to
the right of charge Qb in the i mrued iat.o vicinity of the
charge i s negative; hence, the charg« i s negative (the
electric licld vector is directed toward t.ho charge). The
electric field strength may be positive to the right of Qb
only if Qa is positive and greater (in absolute value)
than Qb : The electric field strength is zero at point Xl if

Qa Qb 0
(l+Xt)2 -- XI - -= ,

whence

g: = ( l:;1 )2.
At all points that are to the right of Qb the electric field
strength is specified by the equation

E Qa Qb
.x= (l+X)2 - X2.

Taking the derivative with respect to x and nullifying it,
we find that the maximum is at the point

1
X 2 === (Qa/Qb)l/3 - t ·

3.4. The direction of the electric field vector at a point
with coordinates x and y (see
the figure accompanying the
answer) is determined by the
two components, Ex and E y :

E-~ E-~
x - 2rteox ' 11 - 2rtBoY ,

For the extension of the resul-
tant vector to pass through Fig. 3.4
the origin, which is where
the conductors intersect, the slope of the vector must
be equal to y/x, that is,

E y 'tlX Y
Ex =~=x·



Thus,

tan a :~: vtx:-== -V L 1/';2.

3.5. No such point can exist in region II, since the elec­
tric field vectors of the two charges point in the same di­
rection-fro.m the linear charge to the point charge. I II

regions I I I and I the electric field vectors of these charges

Fig. 3.5

point in different directions. Let us examine each region
separately. At a certain point to the right of the point
charge, the electric field strength produced by this charge
is

E 1 = -Q/4nEox
2

,

where x is the distance from the charge to the point. The
linear charge produces the following field at the same
point:

E 2 == 't/21tEo (x + a).

The sum 0 £ these fields is zero if

Q 't

2x2 == a+x ·

whence

X= ~~±V 1~~2 +a~.

Only the plus sign in front of the radical sign has any
meaning, since the minus sign corresponds to a point to
the left of the point charge, where the electric field
strengths of both charges are added rather than subtracted
from each other (the quantities are equal in absolute val-
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ue). Now iet us turn to region 1, that is, to the left of
the linear charge. To see whether there are points in this
region where the electric field strength is zero, we deter­
mine the electric field strengths produced by the two
charges in this region. For the sake of convenience we
direct the x axis to the left and take point A on the
linear conductor as the origin (see the figure accompany­
ing the problem). 'Then the field produced by the point
charge is

E - Q
1 - - 4neo (a+x)2 '

while that produced by the linear charge is

E __'t_

2 - 2neox •

The two vectors point in opposite directions, obviously.
The condition that their SUIn is zero yields the following
equation for x:

x2+(Za- ~ ) x+a2=O,

whence

X== i. (!L -2a) ± l/1. (-!L_ 2a)2 -a2
2 2't 4 21:' •

The net field strength in region I is zero if the radicand
is positive, obviously, that is, if

Q~ BaT.

dx

a

Fig. 3.6

If this condition is met, region I contains two points
where the electric field is zero. The distribution of the
electric field strength along the x
axis is shown schematically (with­
Gut a definite scale) in the figure
accompanying the answer.
3·.6. Let us first' solve this prob­
lem by dimensional considerations.
Here are the quantities on which
the interaction force between the
conductors might depend: the
charge densities, the distance between the conductors,
and the "absolute" permittivity
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which obviously has the same dimensions as the permit­
tivity of empty space eo, since the dielectric constant e
is dimensionless. The SI dimensions of these quantities
are

[F] = LMT-2, Ir l == L-ITI, [Ea] == L-3M-IT4/ 2,

[a] == L.

Assuming that these quantities enter the expression for
force I? with exponents p, q, and r, we can write

(C is a dimensionless constant), and the equation for the
dimensions is

This yields the following equations for the exponents:

1 === -p - 3q + r, 1 == -q, -2 = p + 4q,

o == p + 2q.

Hence,
p === 2, q = -1, r == 0,

or

F == C 'tt't2 • (3.6.1)
co8

We have found, therefore, that the interaction does not
depend on the distance between the conductors.

It goes without saying that C cannot be determined by
dimensional analysis alone. The same problem can be
solved by direct integration via the Coulomb law. In
the figure accompanying the answer, A stands for the
point where the plane of the drawing "cuts" the conductor
with linear density 'ti. The electric field generated by
this conductor at the point with the element dx of the
second conductor distant r from the first is

E == Ll
2rteoEr •

The following force acts on element dx of the second con­
ductor:

dF = E't2 dz.

t92



We are interested, however, in the component of the force
that is perpendicular to the second conductor, or dF cos ex,
since the longitudinal component is canceled out by an
equal component acting on the symmetrical element.
Let us express all linear quantities in terms of distance a
and angle ct:

a
r == cos a '

dx:::=_a_ da.
coss (J.,

Substituting these quantities into the expression for the
perpendicular component of the force acting on element
dx, we get (after canceling out like terms)

dF -==: Ll't2 dee,
2neoe

Integration from -n/2 to +n/2 yields

that is, we arrive at an expression of the (3.6.1) type.
Hence C = 1/2.
3.7. The element of the disk 'hounded by radii p and
p + dp and angle drp carries a charge (taking into account
both sides of the disk) equal to 2apdpd(p. At a distance z
from this element and, hence, at a distance r from the
disk's center (Figure (a)), the electric field generated by
this charge is

E == 2crp dp dcp
4neoEz2 •

Only the component of this field that points in the di­
rection of r is of any interest to us since the perpendicular
component is canceled out by an equal component (point­
ing in tho opposite direction) from the symmetrically
situated charge. For this reason, the charge on the disk
limited by the radii p and p + dp creates an electric field

dE == pdp cr cos a.
Z2 •

(3.7.1)

We express all geometric quantities in terms of distance r
and angle ex:

13-01569

r
Z==-­

cos a. '
p ~ r tan cx" J

r du
( p = cos2 (J., •
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After substituting into (3.7.1) and canceling out like
terms, we get

dE ~ (J sin a da .
Eo~

Integration from ex === 0 to the value am corresponding
to the edge of the disk yields

(3.7.2)

For r ~ R, angle a is close to 90°. In this case, E ~

a/eoe, just as ill the ease with an infinitely large plate.

(a) p d~

Fig. 3.7a

Let us calculate E for r »R. To this end we express
cos am in terms of rand R:

r
cos am == - •

V 1l2 -i- r2

Using the rules of approximate calculations, we arrive at

Substituting this into (3.7.2), we get

E == crR2
2eoBr2 •

Since a:=: Q/2rtR2, we have

Q
E~--

4neocr
2 '

just as for a point charge (see the problem).
Figure (b) shows the variation of the electric field of

the disk with distance (curve .7); for comparison, the
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straight line 3 corresponds to the field created by an in­
finitely large plate with a surface charge density equal to
that of the disk, while curve 2 corresponds to the field
of a point charge whose magnitude coincides with
the charge of the disk. Dimensionless coordinates are

r/R201.0

0.2

0.6

E/EQ

1.0 ---\-----~--- __

\
\
\
\
\2

\
-,

-,
<,

<,
<,

~~~

(0)

Fig. 3.7b

employed in Figure (b): r/R along the horizontal axis and
E/ Eo along the vertical axis (Eo is the electric field strength
generated by the infinitely large plate).
3.8. The force with which an electric field acts on a di­
pole is

dE
F === Pel d"r"" . (3.8.1)

Since an infinitely long straight conductor with an evenly
distributed charge (density) generates an electric field

E==_L__
23tB oEr '

we have (according to (3.8.1))

F ==: _ 'tpet
2ncoer2 . (3.8.2)

Nothing was said in the problem about the sign of the
charge on the conductor. Obviously, if the charge is
positive and the dipole moment coincides in direction
with the positive direction of the electric field vector,
the dipole will move toward the conductor, which agrees
with the "minus" sign in (3.8.2).
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3.9. If the field in the region between the plates can be
assumed to be uniform, the plates of the parallel-plate
capacitor interact with a force

F == 8 ocE2S /2,

where S is the area of the plates of the capacitor. Since
E = Ull, with U the potential difference between the
plates, we have

F = cocU2SIZl2.

Thus, for a given potential difference between the plates,
the attract!ve force is the greater the smaller the distance
between the plates. If the upper plate is balanced by
weights, a small decrease in the distance between the
plates leads to an increase in the attractive force, while
a small increase in the distance leads to a decrease in the
force. In both cases the balance will be violated. This
means that the plate equilibrium is unstable. There is
a special set screw in the electrometer that does not
allow the upper plato to move below the level at which
the measurement is taken.
3.10. The force acting on the strip when the strip lies
on the lower plate is determined by the formula for the
attractive force between the plates of a parallel-plate
capacitor,

F === EoeE2 S == QE ,
2 2

where S is the area of the strip, as if it was part of the
lower plate of the capacitor. When this force becomes
greater than the weight of the strip, the strip begins to
move upward, but retains. its charge Q === as.

When the distance between the strip and the lower
plate becomes great, the strip will not only be attracted
by the upper plate but will also be repulsed by the lower
plate where the charge density will gradually become
even. As a result, the force on the strip increases in mag­
nitude. If we ignore the distortions introduced by the
charge of the strip into the field (this can be done if the
strip is small), we can assume that the strip is in a field
of strength E and that the following force acts on it:
F = QE. The charged strip induces a charge on the upper
plate as it approaches the plate. This leads to a distortion
in the field and a slight increase in F. Although in the
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above discussion we have considered a flat strip, the same
line of reasoning is valid qualitatively for any small con­
ductor lying, at the initial stage, on the lower plate of
the capacitor.
3.11. Let us first solve this problem by dimensional
analysis. The following quantities are present in the
problem: the initial potential difference U that the
electron or ion has to pass, the potential difference U 0

between the plates, the distance d between the plates, the
sought distance l that the electron or ion has to tra vel
before it hits the plate, the charge Q of the particle, and
the particle's mass m. The equation for the dimensions
can be written as follows:

[l] = [dja[Uo]b[U]ofQ]x[m]Y,

or
L = Lo[L2MT-3/-1]b+c[IT]XMY.

For the exponents we have the following four equations:

a + 2b + 2c = 1, b + c + y = 0,
x - 3b - 3c = 0, x - b - c = 0,

whence
a == 1, b == -c, x = 0, y == o.

We see that the distance traveled by the particle (an
electron or an ion) does not depend on the charge-to-mass
ratio.

We arrive at the same result if we solve the equation of
motion of the particle. Under the potential difference Uo,
the particle acquires a velocity

v=V 2QUo/M ,

with which it moves parallel to the plates, while the
acceleration with which the particle moves transversely
to the plates is

w = QU/md.

The particle takes a time interval

.r:« d,/m
t=V w== V QU

to..cover the distance

'L == vt ==dV2Uo/U .
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This conclusion has a broader meaning than the one
obtained earlier. It follows that for a given initial energy,
a charged particle moves in an electric field along a tra­
jectory that does not depend on the particle's charge-to­
.mass ratio.
3.12. A dipole that is placed in a nonuniform electric
field and is oriented along the fields direction is under
a force

dE
F== Pel dr '

where Pel is the dipole electric moment. If the direction
of the di pole's axis is taken as the positive direction, the
direction of the force will be determined by the sign of
the derivative. In the case at hand the derivative is
negative and, hence, the dipole is moving toward the
point charge.
3.13. A point dipole oriented along the lines of force
of the field created by a point charge is under a force

dEQ
Fp=Pel~.

Since the electric field created by a point charge is

E - Q
Q - 4rteoBr2 ,

we can write
Q

with the result that the force acting on the dipole is

F :== _ QPel
]> 2n8oer3 •

At points that lie on the axis of the point dipole, the
electric field of the dipole is

E == Pel
]J 2neoer3·

When a point charge Q is in this field, the force acting
on it is

F - QPel
Q - 2JteoEr 3 •

In accordance with Newton's third law, this force must
coincide in magnitude with, but be opposite to, force Fp.
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The positive direction in the figure accornpanying the
problem is the one from the point charge to the
dipole. Therefore, the "minus" sign in the force acting
(on the dipole implies that this force is directed toward
the point charge. The field created by the dipole at
the point where the point charge is positioned has
a "plus" sign, that is, is directed toward the dipole. The
force acting on the point charge points in the same
direction.
3.14. The electric field in which the sphere is placed in­
duces charges of opposite sign on the sphere, in view of
which the sphere becomes a dipole. After the sphere is
shifted, it finds itself in a nonuniform field, which forces
it to move toward the charge to which it was shifted.
Thus, the equi librium of the sphere at the midpoint be­
tween the charges is unstable.
3.15. Due to electrostatic induction, one side of the
sphere becomes positively charged, while the other becomes
negatively charged, and the sphere becomes a dipole.
At first glance it might seem that since the dipole is
oriented along the lines of force of the field and the field
of the capacitor is uniform, no forces act on the sphere.
But this is not so. The presence of the sphere will distort
the field. The charge density, and hence the field strength,
at the points of the plates that lie on the straight line
that is perpendicular to the plates and passes through
the center of the sphere will increase. The dipole will find
itself in a nonuniform field and will be attracted to the
plate that is closer to it. If the string enables the sphere
to touch the plate, the sphere will lose its charge, which
is opposite to the one on the plate. But the sphere will
then acquire a charge that is of the same sign as that on
the plate it has just touched. This leads to a repulsive
force between sphere and plate, with the result that the
sphere will move toward the other plate. After touching
this plate (if the string enables it to do this), the sphere
will reverse the sign of its charge and will move in the
direction of the first plate, and so on.
3.16. If the distance between the spheres is not very
large, the charges on the spheres are not evenly distrib­
uted over the surfaces. The effect of the spheres on each
other results ill that in the case of like charges the sections
of the spheres that are Ia rthcst frorn each other will
have an enhanced charge density, while in tho ease of
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unlike charges the sections of the spheres that are closest
to each other will have an enhanced charge densi ty. For
this reason, the distance between the "centers of charge"
for like charges is greater than that for unlike charges.
Hence, the attractive force between the unlike charges
will be greater (in magnitude) than the repulsive force
between the like charges.
3.17. The field strength in each layer is

E= Q
4rrEoer2 •

On the log-log scale,

log E1 = log -4Q - log 8 1- 2log r 111:eo
(3.17.1)

and

log E 2 == log -4Q -log 82 - 2log r1 (3.17.2)
neo

in each layer at the boundary between the layers. Sub­
tracting (3.1.7.1) from (3.17.2) and bearing in 'mind that
the difference of the logarithms of two quantities equals
the logarithm of the ratio of these quantities, we have

log (E2/E}) == log (Cl/C2).

Hence, in the inner layer the dielectric constant is higher
than in the outer. The difference of the logarithms of the
field strengths in Figure (b) accompanying the problem
is about 0.3, which corresponds to the ratio of the dielec­
tric constants of about 2.
3.18. The lines of force of electric induction become dens­
er as one moves closer to the solid dielectric, which means
that the density of bound charges on the surface of the
solid dielectric becomes enhanced. This density is the
higher the greater the dielectric constant. Whence 8 2 > el •

3.19. The potential at each point is the algebraic sum
of potentials of the field of each charge. For a point
charge, the potential at distance r from the charge is

Q
<p = 41tBoer

(it is assumed that the. potential at Infinity is zero).
When the charges are like, the absolute value of the
potential at a point r distant from, one of the charges is

q>=~ (~+ t~,.)· , .. " ":,it



The sign of the potential coincides with that of the charge.
Hence, in Figure (a) both charges are positive, whi le in
Figure (c) both are negative. When the charges are unlike,
the potential at midpoint between the charges is zero.
The potential is positive closer to the positive charge
to the left in the case shown in Figure (b) and to the right
in the case shown in Figure (d).
3.20. The field strength vanishes only at one point, 3,
where the derivative drp/dr is zero. Since near charge Q2

(a)

(b)

Fig. 3.21

the potential is negative while near Ql it is positive, we
can conclude that Q2 and Ql are negative and positive,
respectively. The potential at every point in space is
the algebraic sum of the potentials produced by all charges.
To the right of Q2 (except in the immediate vicinity
of Q2) the potential is positive. This implies that in
the entire region to the right of Q2 the potential produced
by Ql is greater in absolute value than the potential
produced by Q2. Hence, the absolute value of Ql is greater
than that' of Q2' too.'
3.21 .. Since potentials must be added algebraically, we
conclude that at a point removed from the middle of the
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distance between the charges by an interval of r tho
potential is

Q
([) :.== 2Jlf'(Ie (a~ -'1 - r2 ) 1/2

(the potential at infurit y is assumed to be equal to zero).
Hence, the potential falls off as r increases in exactly
the same manner on both sides of the straight line con­
necting the charges. At great distances (r ~ a), cp varies
in exactly the same way as the potential produced by
a point charge equal to 2Q does.

There are two ways in which one can determine the elec­
tric Held in this problem: either directly calculating the
values of the vectors and adding the vectors geometrically,
just as shown in Figure (a), or employing the formula
that links the electric field strength and the potential,
E == -d<p/dr. Both methods yield

Qr
E r ~ 2Qeoe(a2 +r2 )3 / 2 •

The electric field strength vanishes at exactly the middle
of the distance between the charges and at an infinite
distance from them. It is at its maximum, which can be
found by nullifying the derivative dErldr:

dE, _~ [ (a2+r2)a/2-3r2 (a2+r2) 1/ 2 J_
d - 6 -0.

r Jlfoe (a2 + r 2 ) /2

The electric field strength is maximal at r == a1V2, with

E == O.77Q
m 4neoea2'

Figure (b) shows the behavior of E and cp in dimensionless
coordinates: ~/CPm' E/Em, and ria.

~,~~
~3~

,. ~4~~~

Fig. 3.22

:-3.22. All the equipotential surfaces of the field between
the sphere and the plate are convex downward (that is,
toward the plate). Hence, on any straight line parallel
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to the plate, the points farther from the sphere have
a potential lower than those closer to the sphere. Hence,
the point charge is moved from a point with a lower
potential to a point with a higher potential. This requires
doing work against the forces of the electric field.
3.23. Point 1 has a positive potential with respect to
the negatively charged plate of Cl. This potential is half
the difference in potential between the plates of Cl (and
of C2). Since point 2 lies in capacitor C2 closer to the
negatively charged plate, its potential is lower than that
at point 1. When the point charge is moved from
point 1 with a higher potential to point 2 with a lower
potential, the electric field performs work equal to the
product of the strength of the point charge by the
potential difference between points 1 and 2:

A == Q (~1 -C(2) > o.
3.24. Initially the capacitance of the capacitor (filled
with the dielectric) is C = Boeab/l. After the dielectric
is moved out of the capacitor by a distance x, the ca­
pacitance becomes

C = Boa [x + B (b - x)]ll.

Since the total charge on the plates of the capacitor re­
mains unchanged, the potential difference between the
plates becomes

u == Ql
eoa[x+e(b-x)] ,

where Q is the charge on the plates. Since initially the
potential difference was U == Qlleoeab, we have

U Bb eb
U; x+e (b-x) eb-{e-1) x •

The field strength between the plates will increase by the
same factor. The charge density in the part without the
dielectric is

a e:=:: E == 80Q
1 0 a [E b-- (B- 1) x] '

while on the part with the dielectric it is

(1 - E eE - cocQ
2- 0 ~ aIBb-(e-t)x] •
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Initially the charge density on each plate was

0'0 ~ Qlab,

Of, respectively
b

Bn-(e-1) x[b
and ~~ e

ero B-(e-1)x/b

In the part filled with the dielectric, the charge density
gradually grows in the same proportion as the electric
field strength and the potential difference between the
plates, while the total charge of this part gradually de­
creases due to the increase in x, In the part not filled with
the dielectric, the charge density first drops B-fold (at
x « b) and then gradually grows, approaching the value
it had when the dielectric filled the entire space between
the plates.
3.25. Being a conductor, each plate has the same po­
tential at each point, while the electric field strength,
which is minus one multiplied by the gradient of the
potential, is highest where the plates are closest to each
other. At the same time, the electric field strength near
the surface of a conductor is linked with the local surface
charge density through the formula E = a/B08. For this
reason, the surface charge density at point 1 is higher
than that at point 2.
3.26. The electric field strength at the core is

E == 2U
t D 1 In .(D2 / D l ) •

To find the extremum of E1 ' we take the derivative,

dEl __ 2U (in D 2-lnDl)-1

dD 1 - [D 1 (In D2-ln D t )]2 '

and nullify it. The result is

In D 2 - In D1 == 1,
or

D 1 = D 2/e.

This corresponds to a minimum, since E 1 tends to 00

as D 1 -+0 and D 1 -+D 2 o

3.27. Since the charges on the capacitors Cl and C2
are equal, the potential difference across these capacitors
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and the capacitance of each capacitor are linked through
the following formula:

C1U1 == C'2U2. (3.27.1)

For capacitors C3 and C4 there is a similar formula:

(3.27.2)

For a potential difference between points a and b to be
zero, we must make sure that U 1 == Us and U 2 == U 4 •

Dividing (3.27.1) by (3.27.2) termwise and canceling
equal potential differences, we get

C1IC3 == C2/C4 •

Note that if a constant potential difference is applied
between points A and B and the capacitors leak some
charge (i.e. their resistance is not very high), the distrib­
ution of potential between the capaci tors is the same
as in the Wheatstone bridge, that is, is proportional to
the resistances.*

* These considerations must bo taken into account in some other
problems, too (e.g. see Problems :-J.30 and 3.31).

3.28. The charge of the solid sphere is

Q _ 4 R3-- 3" rrp ,

(0.)

Fig. 3.28a

(3.28.1)

where p is the volume charge density. Outside the sphere,
that is, for r > R, the electric field strength coi ncides
with the electric field strength of
the same charge Q concentrated,
however, a t the center of the
sphere:

E== Q ~~ pR3
4n808r

2 3 8oEr2 •

On the surface of the sphere,
pR

E R ~ 38
0

8 . (3.28.2)

To find the electric field inside
the sphere, we isolate a sphere
of radius r < R inside the sphere (Figure (a) accom­
panying the answer). The charge contained in this
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smaller sphere is 4npr3/3. According to Gauss's theorem,
the electric field at the boundary of the isolated sphere is

E == 3 4~pr3 2 = -.!...~ (3.28.3)
X JtBoBr 3 BoB •

Thus, the electric field along r behaves in two ways: in­
side the sphere it increases linearly with r according to
(3.28.3) from zero to the value given by formula (3.28.2),
while outside tho sphere it decreases by a quadratic
(hyperbolic) law, just as in the case of a point charge.

The behavior of the potential inside and outside the
sphere must also be considered separately. Inside the
sphere,

~ r

1dip ~ - 3:
o
e ) r or = - 6:

0
£ r2

, Ip = Ipo- ~ ~:: •
CPI) 0

At the boundary of the sphere,
1 pR2

'PR ==.: fPo- 6 BoB •

Finally, outside the sphere the potential is distributed
thus:

-;:2 ,

q> r
· 1 pR3 r dr
~ dip == -"3 eoe J
~R R

Putting cp = 0 at r = 00, we get
1 pR2

fPR === 3 BoB •
(3.28.4)

If this is taken into account, we can write for the potenliaJ
outside the sphere the following formula:

1 pR3
fP == 3 Boer •

Formula (3.28.4) can also be used to find the potential
at the center of the sphere:

1 pR2
CPo:::::: 2 Boe •

For the potential distribution inside the sphere we then
get
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Figure (b) accompanying the answer shows the behavior
of the electric field and the potential inside and outside

lp/~mJE/E""
1.0

0.6

0.2

( b)

:Fig. 3.28b

3 r/R

1 x

( b)

Fig. 3.29

dx
(0)

the sphere. Dimensionless coordinates CP/CPln, E/Em ,
and r/R are employed.
3.29. Let us isolate a thin layer of thickness dx parallel
to the plates and lying between them (Figure (a) accom­
panying the answer). A
uni t area of this layer car­
ries a volume charge pdz,
According to Gauss's theo­
rem, the electric field gen­
erated by this layer is
equal in absolute value (on
each side of the layer) to

dE* = pdx/2Bo•

If all the charges to the
left of the isolated layer
generate a field of strength
E, the resultant electric field strength is E - dE* at
the left boundary of the layer and E + dE* at the
right. Thus, over a distance of dx the electric field
strength increases by

dE == 2dE* = p (dx/eo) ·

Integration yields
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with Eo the electric field at the left plate. According to
the basic equation of electrostatics (the one that links
the electric field strength with the potential),

px -+ E _ d~
~ - o--~·

Integration from 0 to x yields

px2 ECPt - CfJ2::-': 28
0

-1- oX, (3.29. /1)

where (Pl is the potential of the left plate, which is zero
by hypothesis. The potential is zero al~o at x == I. Hence,

Eo == -pZI2E·o·

Substituting this into (3.2U.1), we arrive at the relation­
ship between (p and x:

cp =.--- _P- x (l- x).
2Bo

This function represents a parabola with a maximum at
x == l/2. The sketches of the cp vs. x and E vs. .c curves
are shown in Figure (b) accompanying the answer.
3.30. When the capacitors are connected in series, the
charges on them are the same. Since these charges are

Q == CI VI === C2V2 ,

the capacitor voltages are inversely proportional to the
capacitances. Hence, the voltage applied to the capacitor
filled with the dielectric is smaller than that applied to
the air capacitor by a factor equal to the ratio of the di­
electric constant to unity (the dielectric constant of air,
roughly).
3.31. If Co is the initial capacitance of each capacitor,
t he total initial capaci tance of the two capaci tors is
C == C0/2. After the distance between the plates of one
capacitor is increased, the capacitance of this capacitor,
C', becomes srnaller than Co. The voltage U0 applied to
the capacitors is distributed among the capacitors in in­
verse proportion to the capacitances, since the charge on
the plates is

2()8

Q == UIC o == U2C'.
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Since Uo remains unchanged, the voltage across the capa­
citor whose plates are not moved will decrease, while that
across the second capacitor wi ll increase.

If the capacitors are first charged and then disconnected
from the DC source, the charge on them will remain UIl­

changed, The voltage across each capacitor will be

lJI == Q/('o, U2 == QIC1•

For this reason, the potential difference across the capa­
citor whose plates are not moved remains unchanged,
while that across the second capacitor increases.
3.32. When the capacitors are connected in parallel, the
initial capacitance is C == 2EoES/l. After the distance
between the plates is changed, the capacitance becomes

C == coBS -t- BoBS === 2eoeS
l + a l··-- a l- a2/ l •

(b)

~I

Fig. 3.33
(0)

2l
BoeS •

1
C

14-01569

After tho distance between
the plates is changed,

1 __ l + a + l- a _ 2l
C --- 8

0
8S · EoeS - 8

0B,'-.'
,

that is, the capacitance re­
mains unchanged.
3.33. The electric displace­
ment vector has the same
length in both halves, and
since E == Dle.se, the elec­
tric field. strength is lower in the half filled with the di­
electric (where the potential gradient is smaller in abso­
lute value), that is, part 1 (see the figure accompanying the
ploblem). If removal of the dielectric does not alter the
charge on the plates, the potential behaves in the same way
as it did in part 2 prior to removal of dielectric and the
total potential difference will increase (Figure (a) accom­
panying the answer). If removal of the dielectric does
not alter the potential di fferencc, the points representing
the potentials on the plates (rp and 0) will remain nnchang-
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ed, while the slope of the straight line will acquire a vui­
ue intermediate between the one it had in the dielectric
and in the air prior to removal of dielectric (Figure (b)
accompanying the an swor).
3.34. Since the lines of force of the electric displacement
vector are continuous and the field in each part is uni­
form, with the lines of force being perpendicular to the
vacuum-dielectric interface; the electric displacements is
the same in both parts. The electric field strength, which
is defined by the formula E = Dlcoc, is higher in the va­
cuum. The electric-field energy density is determined via
the formula w = EDI2, which shows that this quantity
is higher in the vacuum.
3.35. Since the potential difference between the plates
of the two capacitors is the same and so is the distance
between the plates, the electric field, which for a paral­
lel-plate capacitor is E = UIZ, is the same for both capa­
citors. According to its definition, the electric displace­
ment D = BoeE, is greater in the capacitor with the dielec­
tric. In a parallel-plate capacitor, the surface charge den­
sity is numerically equal to the electric displacement and
therefore must be higher in the capacitor with the dielec­
tric. This also follows from the fact that the capacitor
filled with the dielectric has a higher capacitance, which
means that, with a fixed potential difference, the charge
on its plates is greater than that on the plates of the air
capacitor. The electric-field energy density, determined
via the formula w = ED/2, is also higher in the capaci­
tor with the dielectric.
3.36. The total energy is the sum of the interaction ener­
gies of each charge with the other charges in the system, or

w= Q2 2 QQl
4rtEoEr 4rceoEr·

By hypothesis, W == 0, whence Ql = Q12.
3.37. The energy stored by a capacitor is determined by
the electric-field energy density in the capacitor and the
capacitor's volume: W = wSZ. Since the energy density is

(3.37.1)

after the dielectric is removed, the energy of the capaci­
tor will increase e-Iold. Since the charge on the capaci­
tor remains unchanged, the value of the electric displace­
ment vector remains unchanged, too. If prior to removal
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of the dielectrlc the distance hetween the plates was 11
and after removal it was changed and became equal to
l2' tho fact that the energy remai ned unchanged in the
process can be expressed as follows:

D2Sl1 ::= D2Sl2
BOB! 8082

Hence the distance between tho plates must be decreased
e-Iold, Forrnula (;).37.1.) shows that after the c1 iclectric
is removed (hut prior to changi ng the distance between
the plates) the capacitor increases its energy. This increase
in energy is due to the work performed in removing the
dielectric. The work is done against the forces of attrac­
tion of the free charges on the plates of the capaci­
tor and the bound charges on the surface of the dielectric.
3.38. Since the capaci tor voltage remains constant, the ener­
gy stored in the capacitor, W == U2C/2, decreases because
when the dielectric is removed, the capacitance decreases
s-fold. If the entire system consisting of the DC source
and the capacitor is considered, it can be seen that
the charge flows from the capacitor to the source when the
dielectric is being removed, A fraction of the energy
stored in the capacitor is spent on heating the leads that
connect tho capacitor with the source of potential, while
still another fraction goes into the source. Note that re­
rnoving the dielectric from the capacitor requires perform­
ing mechanical work, which must be included in the
general energy balance. It is expedient, for the sake of
comparison, to consider the reverse process, the introduc­
tion of a dielectric in to the capacitor. Since in this case
the capacitance of tho capacitor grows, the energy grows,
too. This growth is provided by the energy stored in tho
source (a DC source), which supplies the capacitor with
the necessary charge as the capacitance is increased.
3.39. The problem can be related to Problem 3.38. The
answer can be obtained from the general formula for the
energy sLored in a charged capacitor: W == Q2/2C. When
the capaci tor i.s submerged into liquid dielectric, its ca­
pacitance increases, with the result that the energy stored
by the capacitor decreases, since the charge on it re­
mains unchanged. Thus, if the liquid dielectric is "sucked"
into the capaci tor, the capaci tor-dielectric system goes
over to a state with a lower energy, This process COJl­

tinues until the decrease in energy is compensated for by
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the increase in the potential energy of the layer of dielec­
tric. between the plates in the gravitation field of the
earth. It Blust also be noted that work is done agai nst
viscosity forces when t.ho cupacitor is drawn out or sub­
rnerged into the dielectric. After the capaci tor is sub­
merged into the dielectric, its capacitance will increase,
while the potential difference between the plates will
drop. The electric Held strength, which is the same in the
parts with and without the dielectric, decreases too, while
the electric displacement proves to be greater by a factor
of e in the part with the dielectric as compared to the
value in the part without the dielectric.
3.40. The problem can be related to Problem 3.38. There
we found that into the general energy balance one must
include the energy flow through the current source, which
uses a fraction of its energy to increase tho energy stored
in the capacitor when the capacitor is submerged into
the dielectric. The liquid dielectric must be "sucked" into
the capacitor, just as in the previous problem. The effect
of the capacitor's field on the dielectric can also be taken
into account by considering the polarization of the di­
electric. As a result of this process, each volume element of
the dielectric becomes a dipole and is pulled into the field
at the edge of the capacitor. The strength of this field is
higher than that in the dielectric at a certain distance
from the plates.
3.41. When the cube is compressed in the transverse di­
rection, it is stretched in the longitudinal direction, as a
result of which the upper face becomes negatively charged
and the lower face becomes positively charged.
3.42. Formally, such points are determined by the ex­
pression

E = J)/EoE.

Obviously, at the point where l~ === 0 and D =1= 0 (point
0), the dielectric constant is formally equal to infinity,
while at points where D == 0 and E =1= 0 it is zero (points
3 and 6). Of course, such values of E are of a purely for­
mal nature.
3.43. If l is the length of the plates of the capaci tor in
the system where the capacitor is at rest, in a system where
the capacitor is rnoving with a velocity 1) this lengt.h i~

zV 1 -- V
2/C2

• Since the transverse dimensions of the plates
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do not change, the area ratio is also 1/Y1 - v2/e2 •

Since the charge on the capacitor remains unchanged,
the surface charge densi ty increases, with the result tha t

EIE o == 1/Y1 - V2/C2•

4. Direct Current

4.1. Tho two conductors, 1-3-5 and 2-4-6, have different
potentials, with the result that when key K is closed. a
current will flow from 3 to 4, while the currents passing­
through the resistors will flow from .1 to 3, from 5 to H,
from 4 to 6, and from 4 to 2. The closing of the key leads
to an increase in the current flowing through the ammeter.
If the resistances of the conductors 1-3-5, 2-4-6, and
3-4 are extremely low, then the sections 1-2 and 5-6 of
the resistors will be shorted for all practical purposes.
4.2. Prior to closing the key, the circuit consists of two
resistors connected in parallel (the resistance of each re­
sistor being 3R). This means that the total resistance of
the circuit is i.5R. After the key has been closed, the cir­
cuit consists of two sections connected in series, each of
which has t\VO resistors connected ill parallel. The re­
sistance ll' of each section is gi von hy the Iormula

111
If' === If -t- 2R

and is equal to 2R/3. The resistance of the entire circuit
is 4R/3. The current measured by the ammeter is higher
than that measured prior to closing the key.
4.3. If R is the resistance of the whole potentiometer
and R v is the resistance of the voltmeter, the total resis­
tance of section ab of the potentiometer is

Rv (1//2) R R
llab =:-: llv~-R/2 ~-..: 2 (1-t-R/2I l v ) < 2 ·

The resistance of section be is equal to R/2. The voltage
applied to the potentiorneter will not be distributed even­
ly. Since the resistance of ab is less than t.hat of be, the
voltage applied to the first section is lower than that ap­
plied to the second. The higher the resistanee of the volt­
meter, the closer the readings of the voltmeter are to one­
hal] of the applied voltage.
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Fig. 4.4
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4.4. Since the voltage applied to the "black box" is sup­
plied by a DC source, it is natural to aSSUJne that there
are only resistances inside the "box". The simplest way
to lower voltage is to use a potentiometer (see the figure
accompanying the answer). I-Iowever, thoro is not a sin­
gle circuit employing only resistances that can raise vol­

tage. As the figure ac­
companying the answer
demonstrates, from the
voltage applied to termi­
nals 1 and 2 one can al­
ways "take" a certain
fraction, e.g. 127 V,

if while the 127 V applied
to terminals 3 and 4
will yield the same 127 V

OIl terminals .1 and 2. The remark (made in the
problem) that concerns the role of the measuring device
is i mportant since a voltmeter, which always has a finite
resistance, redistributes the resistances in the circui t and,
lienee, changes the voltages (see Problem 4.3).
4.5. Let us assume, for the sake of simplicity, that the
resistances of the two potentiometers are the same.
When the sliding contact of each potentiometer is in the
middle, the total resistance of the circui t is R 0/2, where
R 0 is the resistance of each potentiometer. If the sliding
contact of the second potentiometer is in the extreme
(left or right) position, we have two resistances, R 0 and
11 0/2, connected in parallel (assuming that the wires
ha ve no resistance), so that the total resistance is R =
R o/3. Tho reading of the ammeter proves to be great­
er than when the sliding contact of the second potentio­
rnoter was in the middle position by a factor of 1.5.
Thus, when tho sliding contact of the second potcntio­
meter is moved Irom one extreme position to the other,
the readings of the ammeter pass through a minimum.
4.6. If x is the resistance of the potentiornoter between
point a and the slidi ng contact, the total resistance he­
tween a and the sliding contact is rxl (r + x), while the
resistance of tho entire circuit is R - x -t- rx/(r + x).
The current supplied by the J)(~ source is

flo
1== R-x-l-rx/{r+.r) •
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Uorx
Rx-x2 + R r ·

The potential difference between the sliding contact and
point a is

U === Uorx
(R-x) (r+x)+rx

The current passing through the ammeter is

I. === Uor
<l Rx-x2+Rr'

To find the extremum, we take the derivative

dIn =U r [ -R+2x 1
dx 0 (Rx-- x2+rx)2 J·

(4.6.1)

(4.6.2)

Nullifying (4.6.2) yields

x = R/2. (4.6.3)

If we substitute (4.6.3) into (4.6.1) we lind the minimal
current:

I Uor
min == R (r+R/4) •

Thus, as the sliding contact is moved, the current
through the ammeter passes through a minimum, and the

l/lmdl

0.2

0.2 0.4 0.6 0.8 10 x/R

Fig. 4.6

smaller the r the deeper the minirnum. At x = 0 and
x = R, a current of I max = U0/R passes through the am­
meter. The ratio of I min to IInax is equal to (r/R) (1 +
rlRv:', The Ia/lmax vs. x/R curves for several values
of rlR are shown in the fig-ure accompanying the answer.
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4.7. The exact value of ~x can be determined if one mea­
sures exactly the potential difference between points a
and b provided that the current passing through the
source in question is zero. This can be achieved by selecting
a proper ratio of resistances between points a and band
points band c using the resistance box. Knowing the re­
sistance R between points a and b and the current I,
measured by the arnmeter, we find the sought emf:

~:t = IR.

4.8. Since the currents in the resistors R} and R 2 are
the same, we can wri Le

UAo,lRl = UaBIR2.

The charges on capacitors connected in series are the
same, which means that

Since

UAalU a B ::= R 1/R 2 , UAblU bB = C21C1 , UA a ::= U A b ,

U a B = U bn ,

we have

The resistances and capacitances are in inverse ratio.
Just as in Problem 3.27, where a DC source generates a

potential difference between points A and B, the solution
holds true only if the (activo) resistances of the capacitors
are infini tely large.
4.9. The current remains unchanged on the entire
section from one junction to another. A junction is n point
in a circuit where more than three conductors rneet. There
are seven such sections in the figure accompanying
the problem. If there are n junctions in a circuit, then
Kirchhoff's first law yields n - 1 independent equations.
There are four junctions in the circuit in question (1,
4, 5 and 7). Thus, to determine seven currents we are
lacking four equations, which Kirchhoff's second law
will yield. The simplest way to employ Kirchhoff's sec-
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ond law is to use loops that do not overlap, namely,
1-2-3-4-1, 1-4-5-1,1-5-7-1, and 5-6-7-5.
4.10. There are eight junctions in the circuit. Since Kir­
chhoff's first law yields only n - 1 independent equations
for n junctions, we have seven such
equations. If the circuit is trans- it..-----..
formed onto a plane (see the figure
accompanying the answer), there are
five nonoverlapping loops, while the
loop 1-4-8-5-1 overlaps all other loops
and therefore can be obtained from
these.
4.11. The current flowing in the Fig. 4.10
circuit is I = ~/(R + r). The power
output in the external circuit is

R
P = ]2R = ~2 (R+r)2 •

The maximal power output can be found Irom the condi­
tion dP/dR = 0, or

dP =G2 (R+r)2-2(R+r)R =0
d R (R -1- r) 4 '

whence R = r, The fact that the resistances are equal
means that tho power outputs must be equal, too:

Pr = ]2R.

Hence, the efficiency is equal to 0.5.
4.12. The current is maximal when the circuit is shorted,
or when the external resistance is zero:

1m = e:/r.

Thus, in both cases the ratio of the emf to the internal
resistance is the same.

Maximal useful power output (the power output of the
external resistance) is achieved \VhCIl the cxcrnal resistance
is mado equal to the internal resistance (see the answer
to Problem 4.11), that is, when the current is one-half
the max imul current. 'I'his power output is

~2 (g2

p== 4R =4r.

Since the ratio ~/r is the same in both cases, a double
useful power output is achieved at a double electromotive
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force (for equal currents). Note that the internal resistance
of the DC source must also be doubled if we want the
ratio to remain unchanged.
4.13. If in one position of the sliding contact the rheo­
stat has a resistance R 1 and in the other, a resistance
R 2 , the current is ~/(Rl + r) in the first case and
~/(R2 + r) in the other. Correspondingly, the power out­
put in the external circuit (the same in both cases) is

Dividing this expression by ~2 and solving for 1", we fiud
that

Uy hypothesis, in one case HI == xR and ill the other,
R2 == (1 - x) R. Whence

r ~ R Vx (1- x) .

Fig. 4.14

~~~I1'1'1' ----- .. -1

e, t2 £3 E,'1f en
~~I-:(I--- ----1-------.

~~~I..-----I
~~~I---- ---I

the samo is true of the
potentials at the points
bI , b2 , s; etc., i.e,

Ubi = UbI = Ub3 = .11. ·

Th.is line of re.usoning can be continued. The respective
points can ho interconnected, and the entire circuit will
be transformed into the second variant. Suppose the over­
all number of cells is N. We connect these cells in such H

manner that groups of n cells that form In == N/n parallel

~1S

4.14. The likely circuit, apparently, consists of a combi­
nation of cells connected in parallel and in series. There
are two possibilities here: several parallel groups of cells
connected in series or several in-series groups of cells con­

nected in parallel. First,
it can be shown that the
two variants are equiva­
lent. Indeed, in the first
variant, the potentials
at the points aI' a 2, a 3,
etc. coincide, i.e,

Ua 1 == Ua J == Ua• = ...;



groups are connected in series. In this case the current in
the ex ternal circui t is

s s»
RN+rn2 •

I~ ~n _----
R+rn/m

The power output in the external circuit is

II n
2

1)~]2 == (~N)2 R (RN +rn2 ) 2 •

To find the maximal value, we nullify the derivative of
P with respect to n:

dP 2~2N2n .
dn ~ (UN +rn2)2 (RN -rn2

) :.:..:: O.

Whence

n=VRN/r. (4.14.1)

But this does Hot solve the problem completely. Tho nurn­
bel' n should be 0110 of the cofactors of N. To find a practic­
al value of n, we must compare the power outputs for
two values of n that are closest to the one given by
(4.14.1), that is, one must be smaller than the calculated
value and tho other must he greater, and yet the two must
be cofactors of N. Here is an example. Suppose ·N =
400, R = if) Q and r = U Q. The calculated value is

- -. j40oX!6 - 26 7n- V 9 - .•

The closest cofactors of N are 25 and 40. In this example
the greater power output is at n == 25. 'rhus, the circuit
consists of 16 parallel groups of 25 cells connected in
series in each group.
4.15. Since the displucemcut current is defined as

dD
[diS .:::= S <It '

after performing certain manipulations we can write

coE dU dQ
ldls ~ -l- CIt =:: (it ,

where Q is the charge 011 the capacit.or. 'rhus, the displace­
ment current may be made constant over a definite time
interval if the capacitor is charged (or discharged) by
~ direct current. For this in the circuit of the capacitor
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being charged we must have a device that restl"icl~ t~e
current flowing through it within broad voltage Iirnits
(Figure (a)). A diode operating in the saturation ~o~e
may serve as such a device. For the case of a the~mlo~lc
valve (or diode) the appropriate circuit is shown In FIg­
ure (b), while for the case of a semiconductor diode the cir-

Cu.rrent limiter

(0) (b)

(c)

Fig. 4.15

(d)

cuit is shown in Figure (c). The diode is introduced into
the circuit in the cut-off direction, and the voltage across
the diode is

As long as Ud remains within the saturation region, the
current through the diode (and, hence, the charging cur­
rent) remains constuut. The displacement CUITont remains
co nst.nnt ill the process. After a certain li1I1C i nl.ervnl
has elapsed (the lower the charging current the longer the
interval), the charging current rapidly falls off to ZBfO.

The time dependence of the displacement current is illu­
strated schemat.icnll y in Figure (d).
4.16. At each moment of time the capacitor voltage is
equal to the potential drop across the resistor:

U= JR.
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Fig. 4.16

Bearing in mind that U = Qle and I = -dQldt (the
minus sign shows that the capacitor's charge decreases),
we get

Q dQc= -R dtt

or
dQ 1
Q= - He dz, (4.1(L1)

Integrating (4.16.1.) from the initi al charge Qo to Q and
from the initial moment t = 0 to time t, we get

Q == Qo exp ( - _t_) == UoC exp (_. _t_)
Re, RC •

Accordingly, the current varies with Lime as follows:

l==loexp (- ;c)' (4.16.2)

with 10 = [Jo/R. Taking logs, \VC can write (4.16.2) as
.follows

'Thus, the time dependence of In I is represented by a
straight line with a nega-
tive slope, whose absolute Lnl

value is 1IRC. The resist­
ance R determines the
current at the first moment
of discharge and the initial
capacitor voltage, which is
equal to the emf of the
source. The value of R de­
termined in this manner
and the slope of the straight
line fix tho value of C.
4.17. As shown in the answer to Problem 4.1H, the
discharge current varies wi.th time as

1~'loexP(-RtC)' or lnl=lnlo-(ic)t.

Iui tinl ly, I.e. at t = 0, both currents are the same (see
the figure accompanying the problem). For a fixed capaci­
Lance C this is possihle if the other two parameters, U
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(4.19 1)

and R, chango simultaneously. Since by hypothesis only
one parameter changes, we conclude that the capaci Lance
C varies. The fact that the slope of the straight line repre­
senting the In I vs, t depeudence decreases means that the
capacitance C increases.
4.18. The time variation of the current proceeds as fol­
lows:

In i; In '0- (Ric) t .

The fact that the two straight lines, 1 and 2, are parallel
indicates that the product Re must he constant. Since
by hypothesis the discharge processes differ only in the
value of one parameter, both Rand C remain constant.
What is different is the initial capacitor voltage, and since
for straight line 1 the initial current is higher than for
straight line 2, so is the initial capacitor voltage.
4.19. The current flowing through the resistor with re­
sistance R will generate during a time interval dt the fol­
lowing amount of heat:

dq === 12Rdt.

The time variation of the discharge current of the ca­
pacitor is

'rhus,

dq=I~Rexp(- ;~) dt.

Integrating this expression with respect to t Irom t ==
o to t == 00, we get

q ~ I:RC/2.

At the first moment the discharge current is

10 = UoIR. (4.19.2)

Substituting (4.19.2) into (4.19.1), we obtain the initial
energy stored by the charged capacitor:

q = U:C/2.

4.20. According to Kirchhoff's second law, at each mo­
ment of time the emf of the DC source is equal to the sum
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of the potential drop fie-ross the resistor and the capacitor
voltage:

~ = IR + U.

Bearing in mind that I = dQ/dt and U = QIC, we get

W, =0 R r~~ + ~, or Q~~e = - lie dt.

Integration from Q == 0 1.0 Q and from t = 0 to t and ap­
propriate transform at.inns yield

Q = ~C [ 1 - exp ( - ;e )].
whence

I = ~ exp ( - ;e )= 10 exp ( - fe ).
The amount of heat generated by the current in the re­
sistor R in tho course of dt is

dq=/2Rdt=I:Rexp (- ~~).

Integration from t = 0 to t == 00 yields

q = I~R2C/2 == ~2C/2.

The same amount of energy is stored by the capacitor
when the latter is charged to a voltage equal to the
source's emf. The total energy used up by the source,

00 00

~ ~Idt=~lo ~ e-I/(Rc>dt,
o 0

is equal to i 2C, which is the sum of two equal quanti­
ties ~2CI2.

4.21. The energy stored by a charged capacitor can be
written in the form.

W o = Q2/2C.

After the second (uncharged) capacitor is connected to
the first, the total charge does not change while the capac­
itance doubles. Thus, the total energy stored by this
system becomes

W == Q2/4C,
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(4.22.1)

which is one-half of the initial energy. So where did the
other half go to? As the charge is redistributed between
the t\VO capacitors, a current flows through the conductors
connecting theru and generates heat. III addition, there is
always a magnetic field around a conductor with current,
and this magnetic field carries energy, just as an electric
field does. If the resistance of the conductors is low (zero
in the case of superconductors), tho di fforence between
the initial and the final energy will go to the magnetic
field. Eventually the second capacitor will become fully
charged while the first capaci tor will become completely
discharged and the current will cease. Then the. second
capacitor will begin to discharge, and charge will flow
to the first capacitor. This process will continue, that is,
there will appear electromagnetic oscillations in which
the energy will alternate between that of the electric Held
and that of the magnetic.
4.22. For an electron that is inside the disk at a distance
r from the axis to move along a circle, there should be a
force pulling it to the axi s. Accordi ng to Newton's
second law,

This force is generated by a radial electric field caused by
the redistri bution of the electrons in the disk and is such
that the force acting on the electron is

1/ = eE = mw2r.

If we substituto -d(p/dt for E and integrate from <PI
to (P2 and from 0 to R, where R is the radius of the disk,
we get

~I Rr dq> mw2 r
J dT == - -e J r dr

(j>t 0

As a result, we get the potential difference between the
center of the disk and the edge:

U =-= _ == moo2R2 = mv2

<Pi Q>2 2e 2e'

where v is the linear velocity of points at the edge of the
disk. Theoreticall y formula (4.22.1.) can be used to clcter­
mine the electron's charge-to-mass ratio. But actually
this constitutes a problem, as shown by an estimate of



the potential difference hetween the axis and the edge.
The electron charge is 1.6 X 10-19 C and the electron
mass is 9.1 X 10-31 kg. We set the electron linear veloci­
ly 011 the edge at 300 m/s. 'rho potential difference then
proves to be less than 10-~ V. It is extremely difficult
to measure such a quantity in such a rotating system.
4.23. Moving together with the cylinder, the electrons
in the wire have a momentum mu each. When the cylin­
der is braked, the electrons continue to move, but the
generated potential difference creates a braking electric
field of strength B'. The force acting on every electron in
the wire is

F == eUtt,

with U the instantaneous potential difference. According
to Newton's second law,

t

i../).mv = T1U dt,
u

where Sm» is the momentum lost by an electron during
the entire braking time, which quantity is equal to the
initial momentum mv. The charge-to-mass ratio for the
electron is then

e vl
m 00

SU dt
u

The integral in the denominator can be evaluated by cal­
culating the area under the voltage oscillogram.
4.24. The heating of the conductor will result in the elec­
tron di ffusing into the neighborhood of section ab,
with the potential of the conductor somewhat increasing.
The current flowing in the conductor will have to overcome
a potential barrier at point a. This requires additional
energy, which will be taken from the metal. On the other
hand, when passing through the conductor at point b,
the current goes to a region with a lower potential, and
in this place energy will be released to the metal. As a re­
sult, the point where the temperature is at a maximum
will shift in the direction of current flow.
4.25. Prior to cooling, the resistance of the wire was the
same over the entire length of the wire (precisely, the
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resistivity was the same at ali points of tho wire). When
the fan is switched 011, the resistance of the section that is
being cooled will lower. This leads to a redistribution of
the potential between the cooled anrl uncoolod sections,
with the greater voltage applied to the latter section, as a
result of which its temperature increases. 'I'his phenome­
non is enhanced by the fact that the resistance of the un­
cooled section somewhat grows with temperature, which
leads to a still greater inhomogeneity in the distribution
of the potential in both sections.
4.26. The resistances of bulbs with the same rated volt­
age are in inverse proportion to the rated wattages. Hence,
the resistance of the bulb with the lower wattage is six
times the resistance of the bulb with the higher wattage.
When the bulbs are connected in series with the DC
source, the current is the same and six-sevenths of the total
voltage of 220 V, or 189 V, is applied to the first (25 W)
bulb and one-seventh, to the second (150 W) bulb. Actu­
ally the di fference is still grea tel' because the resistance
of the first bulb wi ll increase due to overheating, while
that of the second will decrease. Hence, the 25-W bulb
must burn out.
4.27. An increase in voltage will lead to an increase in
the currents passing through the conductor and semicon­
ductor, and this will lead to an increase in temperatnre
of both. As a result the resistance of the conductor wi ll
increase and that of the semiconductor will decrease.
Hence, the current through the semiconductor will increase
greater than in proportion to the voltage, while the cur­
rent through the conductor will increase lesser than in
proportion to the applied voltage, with the result that
the ammeter in the semiconductor ci rcuit wi Il register a
higher curren t than the ammeter in the conductor ci rcui t.
4.28. Prior to an increase in voltage, the resistances of
the semiconductor and the conductor were equal. When
the voltage is increased, the current in the circuit in­
creases, too, and so does the temperatures of the sernicon­
ductor and conductor. This leads to a drop in the resis­
tance of the semiconductor and an increase in the resis­
tance of the conductor. The voltage between the semi­
conductor and conductor wi ll redistribute in such a man­
ner that the voltmeter connected to the conductor will
register a higher voltage than the voltmeter connected to
the semiconductor.
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4.29. Theelectrons Ionving thofilament, or rntllo(jp" ere­
ate a negative space charge whose field does not let
all the emi ttod electrons i nto the region. Accord! ng t.o the
Child-Langmuir theory developed 1'01' parallel plane elec­
trodes on the assumption that tho initial velocity of the
electrons is zero, the current density between the elec­
trodes is

. 4 1/2 P'o -. /' l1 U~ /2
J ==- n V In d2

(the three-hnlves power Iaw). ll'ore c and In are the elec­
tron charge and electron nlHSS, if is l.ho voltage drop ac­
ross the electrodes, and d is the distance between the elec­
trodes. On the current-voltage characteristic, the initial
segment of the curve agrees with the three-halves power
law. Then, as the electron cloud is dissipated, the current
gradually reaches a plateau and saturation sets in, with
the saturation current being the total flux of electrons
that the cathode can deliver at a given temperature. Tho
temperature dependence of the current densi t.y is given
by the H ichardson-J) ushman eq nation

. -- A' T2 r ( P)l sc i "" . exp -w.
The quaut.it.y P in the numerator of the exponent is tho
so-r.aJJed work function, or the work that an electron must
do to leave the metal. 'rite other quail ti Lies in the cqua­
tion are as Iol lows: T the Lhormorl ynam ic temperature, k
the Boltzmann constant, A'::=:: G.02 X 105 A/rn2 . }( 2 is
a constant that is a oomhinat.ion of universal constants.
The difference in the curves in the figure accompanying
the problem lies in the tompernturo of tho cathode, which
is higher for curve 2.
4.3 •... When t.hermoclectric current flows from the cathode
to the anode, the electrons leaving the cathode carrv
away an energy required for overcoming the potential
barrier that exists at the metal-vacuum in l.erlnce (the 'York
function of the electrons), with the result that. the enth­
ode cools off. To maintain a constant cathode tomperaturc,
the Iilament current must hei ncroased.
4.31. When the potential rll ilcrcnce between the clcc­
trades is nil, the conconl.rat.ion of positive and negative ions
(cations and anions) is the SHine in practically the entire
volume. WhcJI au external voltage is applied, a current
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generated by the motions of cations to the cathode and
anions to the anode begins to flow in the electrolyte. As
a result, the regions neal' the electrodes prove to be
depleted of ions whose sign is that of the electrode. Cati­
ons leave the anode and anions leave the cathode. For
this reason, near the anode an excess of negative charge is
formed, while an excess of positive charge is formed in
tho region near the cathode. All this leads to a distortion
ill the electric field. The enhanced field near the electrodes
imparts an enhanced velocity to the ions. This ensures
the fJow of current under lower charge carrier concentra­
tions.
4.32. The sign of the volume charge is determined by the
direction of convexity of the U vs. x curve.* The volume
charge is positive where the curve is convex upward and
negative where the curve is convex downward, while the
volume charge is nil where the U vs. x dependence is re­
presented by a straight line. Hence, the entire region be­
tween the cathode and the anode is divided, within the
first approximation (i.e. ignoring certain details), into
the cathode space (from point 0 to point 1 in the figure
accompanying the problem) with a surplus positive charge,
the Faraday dark space (Irorn point 1 to point 2)
with a negative charge, and the region of the "positive
column" (from point 2 to point 3), which constitutes a
plasma with practically equal concentrations of elec­
trons and positive ions and, hence, with a net charge
that is practically nil.

• See Problems 3.28 and 3.29.

4.33. 'I'ho conduction-current densi ty is given by the
form ula

(4.33.'1 )

where e is the magnitude (without laking into account
the sign) of the elementary charge (the electron charge),
llh the concentration of the given type of charge carriers,
U,{ the average directional velocity of the carriers, and
Zk the charge numher, or valence, of the carriers. For
an electron Z == -1, while for a positive doubly charged
ion (say, He++) Z = + 2. Electron veloci ties exceed ion
velocities by a factor of 10 or even 100, with the result that
even at equal concentrations the electron current is
much st.ronger than the ion current. Since in an electric
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field electrons and ions move in opposite directions, we
call assume that the electron vcloci ty is negati vo if tho
ion velocity is set positi vee Since the number Z foe elec­
trons is negative, the sigus of the products in (4.33.1)
coincide, with the result that tho amrneter in the gas dis­
charge gap circuit wil l register the total current of
electrons and ions.
4.34. As the particle moves from the anode to the 1·"31'a­
day cylinder, the field ill tho region between A and F
constan tly changes. WIlen tho particle leaves the anode
(through the aperture) and is moving toward the Faraday

A A t! F

I~ig. 4.34

cylinder, it induces positive charges on these electrodes,
<Hid the magni tudo of these charges cousl.anl.ly changes.
The densi ty of these charges 011 the anode decreases whi le
that on the Farnday cylinder increases (the variation ill
the disl.ri hution of oloctrIc charge for three iuorneuts in
time is shown in the figure accompanying the answer).
For this reason, ill the region of space between /-1 and F
there appears a contin liOUS displacement current, which
means that an exact replica of this current appears in the
circuit. 'I'he current in the circuit can be graphically ro­
presented as a consequence of the fact that in approach­
ing the Farnday cylinder the particle repels, so to say,
the electrons which, in effect, move toward the auode
through the measuring device G. Thus, the current in the
circuit exists during the entire Limo of mot.ion of the par­
ticle between the anode and the Faraday cylinder. as
shown in Figure (0) accompanying the problem.
4.35. If two metals are brought into contact, the Ii miti ng
energies of the electrons will est.ablish themselves a L a
COIDlnOIl level (the common Fermi level; sec the ligure
accom pan ying l he n nswur). The di Ilereuce between the
height of a potenti ul harrier and tho Fermi level deter­
mines t.h« external work f'uuctio n e(p. The difference between
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Fig. 4.35

.- ~ ,--- ­
-- -- --

Wf 1 ,

___--L..~16WF

the two work functions (for the two harriers) is cq ual to
the external contact potcut.ial difference. To transler an
electron Iroui tho su rIaco of metal 2 to the surface 01'
met HI 1 requires performing an amount of work equal to

e ~(p. The distauce be tWOOl I

the levels of mi ni mal electro II

'-='~_-+--__-+- ~ ellergy i n tho metals detelt
-

mines tho internal contact po­
tential difference ~W~'. Ac­
cording to the quantum theory
of metals, the Fermi level
at 0 K is pinned at (h2/2m) X

(3n/n)'!./'J, where h is the Planck constant, "I- the electron
InH~S, and n the electron coucunl.rnl.iou in a metnl.
IIonru, the concentration of electrons ill metal 1 i s higher.
4.36. The coucentral.ion of clcctrous whose ellergy rU1IgcH

Irom lV to W -1- ~W is

fin == f (W) dW == G1W1/ 2d·W,

in accordance with Eq , (1.~3u.1). Iutogruti ng this ox pres­
siou Irom zero to the Iimitiug energy, we obtain the COIl-·

centrat ion of electrons in the entire energy range:
\l"p

n =..c C ~ W 1/ 2 dW "-' ; CW~P •
o

Hence, WF ex: 1'1,'2/3. As is proved ill tho quuul.um theory
of melals, W F j ~ gi ven hy the Iullowi Itg Iorurula (wi til
duo regard 1'01' universal constants):

W ~..!!- (~)2/3
F 2m Jt •

4.37. rrlH~ eleclrical conductivity (spec-inc. couduot.urco)
of H semiconductor depends on temperature according to
the Io llowiug Jaw:

o - ero exp ( - :;. ), or 111 o = JI1 (10- ~~. ,

where ·W is the width of the forbidden hand. This law iru­
plies tha t the wider the forbidden hand, the steeper the
straight. line representing the In rr vs, 11

- -
1 dependence.

Hence, semico nduc l or .1 has a wider forbidden hand.
4.38. Since the upper sections of the curves for the two
semiconductors coi Heide and the slopes of the lower sec-
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tions are smaller than those of the upper, the intri nsic
conriucl.i vil.ies are the saiue. Also, since the lower sections
of the curves slope in the same manner (i.e. the slopes are
equal), the width of the forbidden band for the impuri­
ties is the same for both semiconductors, Thus, these dia­
grams can be interpreted as a characteristic of impurity
semiconductors with different concentrations of the same
impurities. For a fixed temperature, a higher conductivity
corresponds to a higher located characteristic, 1, and,
hence, a higher concentration of impurities.
4.39. 'I'he diffusion of electrons from an n-type semicon­
ductor into a p-type one and of holes from the p-type
semiconductor to the n-type one leads to the appearance
of a positive potential on the n-type semiconductor
(tho left branch of curve 0) and a negative potential on the
p-type semiconductor (the right branch of the same
curve). If we now apply a positive potential to the n-type
semiconductor and a negative potential to the p-type,
the potential difference between the two semiconductors
will Increase (curve 1), whence the boundary between the
two semlconductors is depleted of charge carries as a re­
sult of electrons being drained to the n-type semiconduc­
tor and holes, to the p-type. Such a direction of the po­
tential di Iicronce is the cut-off one. When the external
voltage is applied in the reverse direction (curve 2), the
potential difference lowers, and it proves easier for the
electrons to move to the p-type semiconductor and the
holes, to the n-type. This direction is the conducting one.
4.40. Every semiconductor possesses intrinsic conduc­
tion ill addition to extrinsic (or irnpurity) conduction. In­
trinsic conduction is caused by the transfer of electrons
Irorn the valence band to the conduction band and by
simultanoous formation of holes in the valence band. In­
trinsic conduction is of a mixed nature for this reason, and
because of this tho n-type semiconductor carries a small
number of holes whi le the p-type semiconductor carries a
small n umber of electrons. When a voltage is applied in
the cut-off direction, these charge carriers consti tute
the so-called reverse current. As the temperature of a
semiconductor diode is increased, tho electron and hole
concentrul.ions grow, as a result of which conductivity ill
the cut-off direction grows, too. The reverse current
reaches a plates U when prnr t.i ('all y all the "al ien" ehar'ge
carriers (holes in the n-Lypo scmicouductor and elecLr'Oll:., in
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the p-type) participate. Usually this current is several or­
ders of magnitude less than the direct current, with the
plateau reached at relatively high voltages. The direct
current grows with voltage very rapidly, since as the vol­
tage is increased, it becomes easier for the charge carriers
to pass through the junction.
4.41. Let us suppose that there is a small deviation from
the state with (1 = 1. If a drops at point a, the number of
electrons Impinging on the surface is smaller than the
number of electrons leaving the surface, with the surface
acquiring a negative potential, which brings down (J

still further. And this leads to a further increase in the
negative potential. The process continues until the cur­
rent of primary electrons becomes totally cut off. If at
the same point the value of a increases somewhat, the
surface acquires a positive potential, the velocity of
the electrons increases, and the current continues to
grow, which leads to an increase in (1, up to the maxi­
mum on the curve, and then to point b, where a = 1,
just as at point a. Similar reasoning leads us to the con­
clusion that small variations in (1 at point b change the
potential of the surface in such a way that a returns to
its initial value (J = 1. Thus, point a corresponds to an
unstable state, while point b corresponds to n stable state.
For a small deviation from the state of equilibrium
corresponding to point a, the surface acquires a potential
that either completely cuts off the current of the primary
electrons or corresponds to that at point b.
4.42. The reflected electrons retain practically HI] their
initial energy and, henco, correspond to curve 2 in the
figure accompanying~the problem. Secondary electrons,
on the other hand, are freed from the solid bombarded
with the primary electrons at the expense of the energy
of the primary electrons, and this energy is distributed
between the emitted electrons. The energy of the latter
is, as a rule, considerably Jess than that of tho pri mary
electrons. Moreover, while all the reflected electrons have
veloc-ities that are concentrated within a narrow interval
and have energies close to those of the primary electrons,
the secondary electrons form a broad spectrum of veloci­
ties. The "true" secondary electrons are represented by
curve 1 in the figure accompanying the problem.
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5. Electromagnetism

5.1. If we use the right-hand screw rule, we wil l Iunl tha;
both ill region I and ill region I I I the directions of the
magnetic induction vectors coincide and the resultant
induction niay vanish only at infinity. The same rule
shows that only ill region I I can the magnetic induction
vectors point in opposite directions (i ,e. the induction
created by the two currents), with the resultant indue­
tion vanishi IIg somewhere inside I I. If a is tho distance se­
parating the conductors, then the distance x from a con­
ductor carrying the current 11 to the point where the induc­
tion is zero can be found from the equation

Hence,

5.2. If we use the right-hand screw rule, we wi ll es­
tablish that the magnetic induction can vanish only in
sectors I ann III. If y is thn distanco from a certain point
on tho conductor carrying
the current lIto the poi nt
where the magnetic Inductiou
is zero, and x is the distance
Irorn this point tu the ('·011-

ductor carryiug the current
12 , thou

t"o~lI1 ,!o~12

21tfJ ~

Hence, the locus of points fig. 5.2
where t.he ruaguetic induction
is zero is the sl.rnight line that passes through the point
of i mersection of the cond uclors and whose equation is
y ::-=: ( I1/I 2) .T.

5.3. The magnetic i nducl.iuns generated by a straight
conductor with a current and a circular conductor are,
respectively,

B· p'oJ.tIand B==-­
2r
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Fig. 5.4

In the case corresponding to Figure (h), the directions of
the two induction vectors coincide, while in the case cor­
responding to Figure (c) they are opposite. Thus,

B ~ ~ollI , B ~ f-toIJ-I (1-r-~),
a 2r b 2,. 11:

B :...:~ ~to~tI (1-~)
c 2,. :Tt '

whence
:Tt -~- 1 · , :Tt - - '1. B 68 BBlJ =:.:..;--Ba·-~~ 1.32Ha, Bc= - - a==-:O. b :

:Tt :Tt

5.4. If the distance from the middlu conductor to each
of the other two conductors and to the point where we

wish to determine tho field
is a, t he magnetic field gen­
crated hy each outer conduc­
tor at this point is

II . . I
1 - ~JulV'2

Using the right-hand screw
rule, we lind that the vectors
of the maguctic flclds gcu­
crated hy the outer couducturs

are directed at an angle of UO°, so that the resultant rnag­
netic field strength is

V;- IHi 2 :-_. 2 1f1 ::.....= -- ,, 2na

with the vector reprcsoutiug this resultant directed paral­
lel to the line passing through tho conductors. Employing
the same rule, we wil l find that the magnetic field H:J
generated by the middle conductor points in the direc­
tion opposite to the one of tho resultant H l , 2 ' with H 3~

I/2na, that is, I ti, J :..::= I 1/],2 I. rrhu~, the resultau t
of all three fields is zero.
5.5. A magnetic inductinn vector is always directed
along a tangent to a line of force (for each of the four C.OJl­

duct.ors the line of force is a circle ill 1he plano of the dra w­
ing). As the figure accornpanying the answer shows, the
magnetic inductions generated by currents I I and 14 are
directed along the diagonal of the square Irorn the couduc­
tor carrying 12 to the conductor carrying I;j. Reasoning
along the same line, we conclude that the magnetic in­
ductions generated hy currents 12 and I:J are directed.
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Fig. 5.7

along the diagonal of the square Irorn the conductor car­
rying /4 lo the conductor cutryi ng II. Tho result.ant indue­
l.iou of the magnetic field ge­
neratcd by all four currents,
01' the geometric SHIll or tho
magnetic induction vectors
of tho four currents, lies ill
tho plano of the drawing and
points front right to left.
5.6. Tho presence of a maxi­
mum in the middle bet,veen
tho conductors suggests that
the currents in the conductors
arc flowing in opposite diroc­
tious and that, tho currents
are equal ill maguitude. Al­
lowing for the direction of
the Induction vector at point
Al and employing the right­
hand SCl'e'V rule (see the figure
accompanying the answer),
we conclude that in tho
upper conductor the current is directed toward the
reader and in the lower, away from the reader.

5.7. At the poin t that lies in the
middle between the conductors the
Induction is zero, which means
that hath currents flow in the same
di rocl.ion. Employing the right­
hand screw rule, we can determine
the direction of the magnetic in-

A due-lion vee-lor in the region to the
right of the conductors for both
possible directions of current. As
tho Iiguru accompanying tho pro b­
Icm shows, the induction vector to
the right of the conductors is direct­
cd upward. Hence, the currents
are flowing toward the reader (see

the figure accompanying the answer). At a distance x
from point lVI the induction is

B - ~IlP,].'\·

- JT [.£2-1- ( ; )2J ·
235



The derivative

Itolt! [X2+ (-~r-2x2]

n [X2+ ( ; r'l'
vanishes at x = a/2. It is at this distance that B is maxi­
mal, with IJn1a x :.=: llo!ll/na.
5.8. The induction in tho middle of a very long solenoid
depends only on the number of ampere-turns per unit
length of solenoid. Suppose that we have two very long,

I~'ig_ 5.8

similar solenoids with equal ampere-turns per unit length
and that those solenoids are placed far apart. We denote
tho induction in the middle of a solenoid by B nl and that
at all end Iacc, by lJe .c- Lot us bring these two solenoids
together in such a manner that the d irecl.ions of their
magnetic inductions coincide and that the solenoids form
a now long solenoid. At the point where the two solenoids
touch (the right end face of the left solenoid touches the
left end Iuco of the right solenoid), the two induction vec­
tors B p . ( add up and Iorrn the total field with induction
2Be.f - But this point is simply the middle of the new so­
lenoid, where the induction, as we already know, is lini­

Thus, B m = 2B e.r.
5.9. Employing the left-hand rule, we will find that the
force acting on the side of the loop parallel to the conduc­
tor and closest to it is directed toward the conductor
while tho force acting on the opposite side of the loop pu­
rullcl to the conductor and farthest from it is directed
away Irorn tho conductor. Since the first force is greater
in magnitude, the loop moves toward the conductor.
Employing the same rule once more, we will see that the
force acting on the upper side of the loop is directed up­
ward while that acting on the lower side of the loop is di­
reeled downward. Thus, the forces tend to pull the loop
apart, t hat is, to increase tho area su blended hy the loop.
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ri'his will actually happen if tile m.ateriai of the loop is
elastic.

The answer to the question can be obtained Irorn a more
general reasoning. The work done in the process of displac­
ing a loop carrying a current in a magnetic Held is A =
I ~1p, where ~'I' is the increment of the magnetic flux
coupled with the loop. 'The loop tends to move or change
its form in such a manner that the magnetic flux coupled
with it acquires the greatest possible value. The nux is
assumed to be positive if inside the loop it coincides in
direction with the flux created by the current in the loop.
In allowing for the various changes in the flux coupled
with the loop one must take into account the changes that
are due to the changes in the shape of the loop. In the
case at hand the direction of the magnetic flux created by
the current in the straight conductor and that of the mag­
netic flux created hy the current in the loop coincide, and
since the induction of the field created by the current in
the straight conductor increases as we move closer to the
conductor, this will lead to a certain displacement of
the loop. The fact that the square loop transforms into a
circle as the loop's area increases also leads to an in­
crease in both the outer and inner magnetic fluxes.
5.10. Both a torque and a force act on the loop. The di­
rection of the torque is determined by the fact that the
positive normal to the plane of the loop must point in the
direction of the induction of the external Held. The right­
hand screw rule is used to determine the positive di­
rection of this normal, which therefore coincides with the
direction of the magnetic field of the loop proper. In ac­
cord wi th the direction of the current in the loop, the pos­
itive normal points upward. In the external field the loop
turns counterclockwise, with the magnetic field generated
by the current flowing in the loop coinciding in direction
with the external magnetic Iield. The direction of the force
acting on the loop is determined by the nature of the
inhomogeneity of the external field. Since a loop carry­
ing a current and placed in an ex tornal magnetic Iielrl
moves in such a manner that the magnetic flux coupled
with it attains the maximal possible value (ill the algch­
raic sense), when the directions of the ex ternal and the
intrinsic flux coincide, the mot ion occurs in the direc­
tion of the field with the higher induction, which in tho
case at hand means frorn left to right.
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tl.ft. A. similar qucsl.ion has heon considered in Proh]effi
5.9. Although in this case no external magnetic nux is
present, the contour may influence the magnitude of
tho nux coupled with i I. by (",hanging its shape. Since the
area aud , hOIlCO, tho flux through tho contour arc muxiuial
when the contour is in the Iorm of a circle, the magnetic
forces acting on the contour tend to transform tho contour
in just this manner. We can arrive at the same conclu­
sion by considering the interaction of two clements of
the contour that arc opposite to each other. The currents
that fJO\V in these elements terul to move the clements
apart, since they flow in opposite directions. The col­
lection of all such forces tends to stretch the contour.
5.12. The following force acts on a contour carrying a
current and placed in a nonuniform magnetic field with

~~
I

I air I
I.. -1"- -.,

(0)

(5.12.1)

the directlons of the Iines of force of this fielrl col nr.irling
with those of the field generated by the current ill the

dB
contour: F == 1)m~

In the case at hand, the force is determined hy the values
of the derivative dB/dr at different points of the field of
the solenoid. The induction of the field of a solenoid of a
finite length. is given by the formula" (see Figure (a) nc.­
companying the answer)

B ~oINo ( . .)== 2 slna'1- sl n cx2'

After simple l.rnnsformntinns, the rleri vnt.ive dB;'],. cuu
he wri tten as
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Formula (5.12.2) shows that (ji?/dr js nonpo~iUve for
r > O. This means that the force acting on the conlour is
attractive (in Figure (3) t.his force points from right to
left).

At r =--.; U we have JiJ/d,. ~ U, with the result that at
point 1 the force is zero. This also follows from the fact
that point 1 in the middle of the solenoid is the equilib­
rium point of the contour positioned inside the solenoid.
At point 2 (r :::-::: a),

~~ =- ft;~t 0
[ (1 -1-1a~/U2)3/2 - 1] ' (5.12.3)

while at point 3 (r = 2a),

dB 110
1N 0 [1 1 ] (5 12 4

~ == 2r _ (1-t- na2/112) 3/ 2 - (1+a2 j R2)3/2· •• )

Comparison of (5.12.3) and (5.12.4) shows that the numer­
ical value of the derivative is greater at point 2 than at
point 3. It can also be verified that at all poi.nts outside
the solenoid the attractive force (if the direction of the
current in the contour is opposite to that of the current
in tho solenoid, tho force is repulsive) is smaller than at
an end face of the solenoid, and decreases as the di~­

tance Irorn tho solenoid grows.

Formula (5.12.1) can be obtained in the following manner
(see Figure (b) accompanying the answer). The element <Ix
of the length of the solenoid contains No dx turns (with No
the number of turns per unit length). The induction at point
A generated by the current flowing in these turns is

dB=~ INodxRdffJ
4n :z:2 '

whore R drp is the element of length of the turn subtended
by an angle drp. The projection of dB on the solenoid axis is

dBII=[1oINo~:Rdcp cosa. (5.12.5)

The perpendicular component of dB is compensated by the
ind uction generated by the symmetric elements of the same
turn. Expressing all quantities in terms of angle a and the
solenoid rad ius R, we get

R R
z=--, r-x=ll tana, d.T-=-='--: ----2- dce,

cos a cos a
Substituting all this into (5.12.5), \VO find that

dBIl =:: _u_ Jl'ol N 0 d({) cos ex d«,
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which yields formula (5.12. f) after we int~grate from 0 to
2n wi th respect to <p and from a l to a 2 with respect to Ct.

5.13. Initially the external magnetic flux coupled with
tho contour is zoro. III tending to increase this flux, the
contour moves in such a manner that (a) the magnetic mo­
ment vector associated with the contour aligns with tho
induction vector of the external field and (b) contour
moves into the region of higher induction after the align­
merit is completed. Under the given directions of the cur­
rents, the induction generated by the solenoid is directed
from right to left and the magnetic moment vector of the
contour is directed upward. Thus, the contour rotates
counterclockwise and moves toward the solenoid. If the
direction of current in the contour is opposite to the one
shown in the figure accompanying the problem, the con­
tour rota tes clockwise and also rnoves toward the sole­
noid.
5.14. Contour 2 is in a nonuniform magnetic field. If
the current in this contour flows in the same direction as
the currents in contours 1 and 3, contour 2 is attracted
to the other two contours. If it is deflected from the
state of equilibrium in SOUle direction, then Irom this di­
rection there acts on it an attractive force that is greater
than the other attractive force (since contour 2 is in a
nonuniform magnetic field), and this means that it will
move in that direction and wi ll be drawn closer to the
corresponding contour. If tho current in contour 2 flows
in the direction opposite to that of the currents in con­
tours 1 and 3, then it might seem that contour 2 is in a
state of stable equilibrium, since repulsive forces act
from both directions. But there is another reason for in­
stability. For an arbitrarily small rotation of contour 2
there appears a torque acting on this contour, and this
torque tends to rotate the contour into such a position
in which the direction of the current in contour 2 coin­
cido with that of the currents in contours 1 and 3. When
this process is completed, we again have to deal with the
instability considered in the first case.

Analyzing the behavior of contour 2, we see that ill
both cases the instability manifests itself through a gen­
eral rule, according to which a contour moves in an ex­
ternal field or changes its form in such a manner that the
magnetic flux coupled with the contour acquires maximal
value.
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5.15. The work performed in moving a contour carrying
a current is equal to A = I ('¥ 2 - WI). If the flux coupl­
ed with the contour whose position is changed is initial­
ly WI' then upon rotating the plane of the contour by
1.80

0

this flux becomes -'1'1' upon rotating the plane by
90° it drops to zero, and upon moving the contour whose
position is changed away from the fixed contour the flux
decreases but does not become zero. Thus, in the first
case Al ::::= -21\J'1' in the second A 2 = -flyI, and in the
third A 3 == -I ('1'1 - lJ!2), where \f2 is the flux coupled
with the contour upon moving the mobile contour away
from the fixed contour. The minus that is present in each
formula shows that the work must be done against the
interaction of the contours.

5.16. The velocity of each particle may be decomposed
into two cornponents, one pointing along the induction
vector, and the other at right angles to the induction vec­
tor. The component directed along the field does not
change since the Lorentz force affects only the component
that is perpendicular to the field. If we denote this latter
component by V.l the Lorentz force is

F = evloB. (5.16.1)

This force, which is perpendicular both to the velocity
of a charged particle and to the induction vector, imparts
a normal acceleration to the particle in question, with
the equation of motion of the particle in the direction
perpendicular to the field being

(5.16.2)

Combining (5.16.1) with (5.16.2), we can determine the
radius of the circle along which the particle moves and
the time it takes the particle to complete one circle (which
does not depend on the velocity). In the course of the
same time interval, T, the particle also moves along the
field by a distance h = vIIT, where VII is the component
of the velocity along the field. The result is the motion
of the particle along a helical line with radius R and lead
h. Since for an initial velocity v and an angle a the lon­
gitudinal component of the velocity is VII = v cos a
and the transverse component is v.l == v sin ex, the trajec­
tory of the particle with the larger angle ex has a greater
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radius and a smaller lead of the heiicai line.
5.17. An electron accelerated by a potential di fference
(1 acqui res ki netic energy

mv2j2 = eU. (5.17.1)

The force acting on the electron in a magnetic field is the
Lorentz force

F = cuB;

which makes the electron move along a circular arc whose
radius is R, so that, according to Newton's second law,

mv21R == eull, (5.17.2)

rrhe ind uction of the magnetic field generated by the cur...
rent in the solenoid is

(5.17.3)

Excluding velocity v Irorn Eqs. (5.17.1) and (5.17.2) and
substituti r.g the value of B from (5.17.3), we find the
sought for charge-to-mass ratio:

e 2U
m = J!512N~R2

5.18. The electric field vector inside the capacitor is di­
rected at right angles to the capacitor plates. The force
Fe = QE = QUIZ with which the electric field acts on
the particle is directed in the same manner. A force equal
in magnitude to Fe but pointing in the opposite direc­
tion acts on the particle from the magnetic field. Accord­
ing to the Lorentz formula, this force is Fm = QvB
and is directed at right angles to the velocity of the par­
ticle and the magnetic induction vector. This means that
the induction vector must be perpendicular to the electric
field. As we have said earlier, the two forces must be
equal: QUIZ = QvB, or

B = UI(vZ). (5.18.1)

The velocity the particle acquired in an electric field
can be found by employing the energy conservation law:

mv2/2 = QUo.
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Solving this for v and substituting the result into (5.18.1);
we finally obtain

B= ~ V 2Q";;o •

5.19. According to the Lorentz formula, charges moving
in a magnetic field are subjected to a force whose direction
is determined via the left-hand rule, where the positive
direction of a current is defined in the "electrical-engi­
neering" sense, that is, the direction in which the positive
charges move in the conductor. Therefore, irrespective of
the sign of the charge carriers, the forces acting on these
carriers point in the sarne direction. In the case illustrat­
ed in the figure accompanying the problem, the charges
move downward. In a metal or an n-type semiconduc­
tor, where electrons are the charge carriers, this will re­
sult in a depletion of charge carriers in the region about
point a; the region will acquire a positive potential. In
the case of a p-type semiconductor the sign of the charge
is obviously minus.
5.20. According to Lenz's law, the induced current is in
such a direction as to oppose the change in the magnetic
field that produces it (that is, oppose the change in. mag­
netic flux coupled with the contour). When the two con­
tours approach each other, the flux coupled with the sec­
ond contour increases, which means that the direction
of the induction current in that contour is opposite to the
current in the contour. On the other hand, when the con­
tours are moved away from each other, the decrease in
the flux in contour 2 leads to an induction current in that
contour that is directed in same sense as in contour 1.
5.21. The induction emf is

G. - - d (LI) - - L ~ - I ~
l .- dt - dt dt ·

In the case at hand the variable quantity is the induc­
tance. When the spiral is stretched, the inductance falls,
so that dLldt < 0 and ~i > O. The generated induc­
tion emf leads to an increase in the current in the cir­
cuit. For an exact calculation one is forced to solve the
equation

(
dI dL)jI = ~o-Ldt-I Cit R,
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which requires knowing the time dependence of the In­
ductance, L == L (t).
5.22. Since removal of the iron core results in a decrease
in the induction and the magnetic field flux in the so­
lenoid, during removal there emerges a self-inductio n
emf, which opposes the reduction in the flux and, hence,
increases the current flowing in the solenoid (the direc­
tion of the external emf, which supplies DC power to the
solenoid, and that of the self-induction emf are the
same).
5.23. The self-induction emf defined by the formula
~S.1 = -L(d1/dt) is proportional to the derivative
dI/dt (for equal inductances), which is the greater the
steeper the straight line. Hence, the self-induction emf
is higher for the inductance for which the time dependence
of the current is depicted by straight line 1. Since the
slopes of the straight lines do not change when the
currents pass through zero, both the numerical values
and the directions of the self-induction emf's are re­
tained.
5.24. The self-induction emf defined by the formula

~ --L~5.1· - dt

has its maximal value, obviously, at the point where the
rate of decrease of current is greatest, that is, at point 3.
5.25. In Figure (a), after key K is closed, the current
flowing through the circuit that consists of Land R con­
nected in series is initially the same as the current that was
flowing before K was closed. For this circuit we can write
Kirchhoff's law in the form

dl
-1.1 dt==Rl.

Separation of variables and subsequent integration yield

I = 10 exp ( -Rt/L).

The current falls off according to an exponential law,
with the self-induction emf being initially

dI
~S'l' == -L dt ==: Io·R,

which means that the self-induction emf is equal to the
emf of the DC source.



In Figure (b), after key K is opened, the current initial­
ly is the same as the one that was flowing in the circuit
before K was opened. In this case, however, ther esistor
R closes the circuit. Since prior to opening the key the
current flowing in the resistor was much weaker than that
flowing in the induction coil, the voltage across the resistor
after K is opened may initially become considerably high­
er than that prior to opening the key, which is possible
only if R is considerably higher than the resistance of the
DC source. One must bear in mind also that after open­
ing the key the current in the resistor will reverse its
direction.
5.26. The increase in current in the circuit with a re­
sistance and an inductance occurs according to the law

I = ~ [1- e(R/Llt]. (5.2ti.1)

Since by hypothesis only one parameter can vary, the pa­
rameter may be only the inductance because conserva­
tion of the limiting current is possible only when two pa­
rameters, 0 and R, are varied simultaneously. Formula
(5.26.1) implies that the increase in current is the slower
the higher the inductance in the circuit. Hence, curve 2
corresponds to a higher inductance.
5.27. The magnetic flux coupled with contour 2 is

\f == BS,

where S is the area of the contour, and B is the magnetic
induction at the point where the contour has been
placed. Accordingly, the induction emf generated in the
contour is

dB dB dr dB
01 ~- - S ~: dt - S ---err- dt == - Sv ---err •

The induction of the magnetic field generated by the cur­
rent flowing in a circular contour and measured at a cer­
tain distance from the contour on the contour's axis is
given by the formula

B !!oPm
- 21t (R2+ r2)3/2 '

where Pm is the magnetic moment of the contour. There­
fore, the ind uction emf in contour 2 is

<£? _ 3floPmSv r C__r__
e~ -?n (R2+ r2)O/2 (R2+ r2)O/2
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with C = 3!JoPmS v/2n . The sign of r determines the sign
of the induced emf; when contour 2 is moved closer to con­
tour 1, r is negative and so is the induced emf, so that the
direction of the current in contour 2 is opposite to that
of the current in contour 1. When contour 2 passes
through contour 1, the induced emf changes sign. The
maximal value of this emf can be obtained by nullifying
the derivative,

d~t (R2 + r2)5/2- (5/2) (R2+r2) 3/ 2 2r2

de == C (R2+ r2) & == o.
Thus the emf is maximal at r = R12. An emf of equal mag­
nitude but of opposite sign is generated at the same dis­
tance hut Oll the other side when the contours are brought
together.
5.28. When key K1 is closed, a closed circuit consisting
of a DC source and the induction coil L1 is formed.

(u )

Fig. 5.28

(c)

Since there is no resistance ill this circuit, the stun of
the emf's is zero:

~-Li ~I =0.

The fact that 0 and £1 are constant requires that dlt/dt
he constant, too. Thus, a current linearly increasing with
time will flow in the circuit (the solid line in Figure (a)
accompanying the answer). The magnetic flux generated
by this current is coupled with both coils and also linear­
ly increases wi th time:

'¥ = L 111 •

In the second coil there appears a constant emf (Fig­
ure (h) accompanying the answer) whose direction is op­
posite to that of the current in L1:

~2=== - cd}'!' ~ - t., dl 1 === -L
2

d/1
. . t d~ (it .



The current in the first coil increases with a constant t i me­
rate as long as K2 is open. When K2 is closed, a current.
flows in L2, with the magnetic field generated by this CUf­

rent opposing the field generated by the current ill Ll .
The fact that the instantaneous value of the flux coupled
with both coils must be preserved requires that there be
a jump in the current in L1, after which the current wi ll
continue t.o grow according to the same linear law (the
dashed broken line in Figure (a)). The current in £2 wi ll
remain constant during the entire process (Figure (c) ac­
companying the answer).
5.29. (1) To find the mutual inductance we determine
the magnetic flux coupled with the contour and generated
by current I flowing in the straight conductor. In this
case the mutual inductance is determined from the equa­
tion M == 'I!/ I. The induction at a distance x from the
straight conductor is B == !lo~tII2Jtx. The fluxes that flow
through a part of the contour dx wide and b high and
through the entire contour are, respectively,

d<D ~ ~o~ !..- b dx
2n x '

c+a

cD === f.lol1 lb r ~ == f.toll Ib In c+a •
2rt J X 211: C

c

When there are N turns in the contour, the flux coupled
with the contour is

'If =--= NQ> ~-== f.tof.t I Nb In c+a .
211: C'

which implies that the mutual inductance is

M ==- Ilo~ bN In c+a .
2n c

(2) Since the rotation of the contour through 90~ makes
the flux coupled with the contour vanish, the amount
of electricity induced in the contour as a result of such a
rotation is determined by the formula

Q~ --!. ~-= floflb NIl c+ a
If 2rrR' n c .

(3) The rotation of the contour through 180
0

requires
the following work to he done:

A ==.: -20/1== _ ~toJlI2 Nb In c -l-a
... n c
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(since after the rotation the flux coupled with the contour
will become -'¥). The "minus" shows that the work is
done against the forces induced by the magnetic field.
5.30. When a current flows in a conductor, the induction
of the rnagnetic field generated by this current at a dis­
tance r from the conductor is

B = ~oI/2nr.

The magnetic flux coupled with the contour formed by
the winding of the loop is 1f = BSN, or

'¥ = floISN/2nr.

When the current drops to zero, the flux follows it, and
the amount of electricity flowing in the contour is deter­
mined by the formula Q === 11'¥/R. Hence, the current
that had been flowing in the conductor prior to switch-off
is

I:.=: 2nrRQ
lloSN •

5.31. The following emf is induced in the coil:
- d'l'Gl ~ -dt. (5.31.1)

We see that the maximal possible value of ~i is the high­
er the greater the rate with which the coil is moved out
of the field. The area under the curve is given by the inte­
gral

t \1'2

) Gjdt "'-' -- .\ d qr r: 'Y,- lYZ 'c lV, ~- BSN
o \1'1

and, hence, is independent of the rate of coil removal from
the region with the field.
5.32. (1) The system can be considered as being a new
solenoid whose length is twice as large as that of one sole­
noid, with a density of turns the same as that in one so­
lenoid and with the same cross-sectional area. Since the
inductance of one solenoid is L == l-!oN0V, where No
is the number of turns per unit length, and V is the sole­
noid volume, which in this case is twice the volurne of
one solenoid, we have L 1 == 2L o. The same result can be
achieved by considering the self-induction emf that is
generated in the two solenoids connected in series. Th~
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total emf is equal to the sum of the emf's generated in
each solenoid; hence,

'[I = - 2L o ~~ ,

which yields L 1 = 2L o•
(2) When the solenoids are connected in parallel, the

self-i nduction emf in each solenoid is

cc ::-; - L d (I /2) == _.J..-- L ~
1 0 dt 2 0 dt •

Because the solenoids are connected in parallel, the total
emf has the same value. Thus, with a current I in a cir­
cuit that is external with respect to the solenoid, the in­
duced emf is one-half the value for the inductance L o.
Hence,

1
L 2 ==: 2 t.;

(3) In this case, the number of turns per unit length is
twice as large as that of one solenoid, and since the induc­
tance is proportional to N~, we have (provided that the
current remains unchanged)

£3 = 4L o·

(4) If one solenoid is fitted onto the other and the senses
of the turns coincide and the solenoids are connected in
parallel, the current through each solenoid is //2 if the
current in the circuit is I, while the flux associated with
current /12 is <!l/2. The total flux is <D and the flux coupled
with each solenoid is 'If == fJJN c- In each solenoid
there is generated a self-induction emf equal to the one
induced in a separate solenoid when current I varies.
Since the solenoids are connected in parallel, this emf
is the common emf of both solenoids. Hence,

L 4 = L o-

(5, 6) In both cases the induction flux in the solenoids
is zero, so that L5 = L6 = O.
.~,.33. The induced emf is

dI
~,1~ -L dt~



Hence, the value of the emf is determined by the rate
with which the current decreases (the sign of this rate is
opposite to dI/dt). The slope of the straight line on the
0-1 section is twice as large as that of the straight line
on the 1-2 section and coincides (numerically) with the
slopes of the straight lines on sections 3-4-5 and 5-6.
Hence, in the time interval between poi nts .1 and 2 the

it 6 t

Fig. 5.:~3

induced emf is one-half of the eruf 's in the other intervals
except the interval from point 2 to point 3 where ~1 ==
o (I = const).
5.34. In each beam we isolate an element of length l.
On the one hand, the element can be thought of as a charge
Q == enSl, or, on the other, as an element of current
I == env!.'). An electrostatic repulsive force Fe == EQ acts
on each charge element, where E can be assumed to be
the electric field generated by an infinitely long straight
conductor carrying a charge whose linear density is
1" == enS. This Held, which acts on the charges in the
second beam, can be written in the form

so that



The isolated element, if considered as an element of CUf­

rent, is under a force Fm = BIl, where B is the induction
generated by the other current:

B -_ envS
- f.lo"2Jir-

Thus

The ratio of these two forces is Fm/Fe == V2Bol-t o. Since
Eof.lo == 1/c2 , '\vhere c is the speed of light in vacuo, we
obtain

H

8

Fig. 5.36

'I:===-===:rN

5.35. The reasoning is all wrong. Even if the electrons
in the conductors are at rest in relation to the needle, the
positive ions that are moving in this case in the opposite
direction create, obviously, a magnetic field equal to the
one generated by the moving electrons when the needle
was at rest. If the electrons are moving in a vacuum, then
the electrodes and the electric field move in the opposite
direction (when the needle is at rest in relation to the
electrons).
5.36. The permeability of air is practically unity and
at any point the magnetic field vector coi ncides in di­
rection with the magnetic induction
vector. In the emu system of units
both vectors coincide in magnitude
as well, while in the SI system
they are related thus: H = BIllo.
Since the lines of force of indue- sA::::==:::::!!:==~
tion are continuous, inside a bar
magnet they are directed from the
south pole to the north pole and
are continued outside the rnagnet
by lines directed from the north
pole to the south pole. To deter-
mine the direction of the magnetic field inside the
magnet, one must bear in mind that the circulation
integral of the magnetic field vector along a closed con­
tour must he equal to the algebraic sum of the currents en­
compassed by the contour. Since in the case at hand there
{H·'~ no currents, the circulation integral along any con-



tour lying inside the magnet must be zero. If the contour
passes partially through the air surrounding the magnet and
partially in the magnet, the circulation integral may be
equal to zero only if inside the magnet the magnetic field
vector is directed from the north pole to the south pole.
Formally this means that inside the magnet the permea­
bility is negative.
5.37. Alternating magnetization results in liberation of
heat in the steels, with the amount of heat proportional
to the area bounded by the hysteresis loop. Since a trans­
former operates on alternating currents, the amount of
heat liberated in the core of a transformer will be the
greater the bigger the area bounded by the loop. From this
fact one can conclude that the steel whose hysteresis loop
is depicted in Figure (b) accompanying the problem is more
desirable. On the other hand, it is desirable that a per­
manent magnet have as high a residual magnetic induc­
tion and a coercive force as possible. This implies that
the steel more suitable for manufacturing a permanent
magnet is the one whose hysteresis loop is depicted in
Figure (a).
5.38. The elementary work involved in changing the
magnetic flux coupled with a contour carrying a current
I is

dA = I d'l', or dA = IBN dB.

If we use the relationship that exists between the current
in a solenoid and the magnetic field generated by this
current, H = IN/l, we obtain

dA = H Sl dB = VHdB,

where V is the volume of the core. The entire work is
B

A=V IHdB.
o

The integral on the right-hand side is the area bounded by
the B vs. H curve, the ordinate, and the segment of a
straight line parallel to the H axis (see the figure accom­
panying the answer).
5.39. A.s shown in the answer to Problem 5.36, the mag­
netic field inside a permanent magnet is directed from the
north pole to the south pole, while the induction is direct­
ed from the south pole to the north pole, with the resulj
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that these quantities have opposite signs. On the hyste­
resis loop, this condition is met on sections 2-3 and
5-6 (see the figure accompanying the problem). Formally,
to the permeability on these sections we can assign a nega­
tive value. Correspondingly, to point 0 we may assign a
permeability equal to ±oo, while points 3 and 6 cor­
respond to zero values of the permeability.
5.40. After the current in the conductor has ceased, the
circulation integral of the magnetic field strength along
any closed contour is zero (this is true even for a closed

o H

Fig. 5.38 Fig. 5.40

contour that passes in the toroid). Since all points of a
contour that is a circle concentric with the section of the
conductor are identical, the magnetic field strength at
all points inside the toroid is zero, too. At the same time,
the toroid carries a residual magnetic induction whose
lines of force are circles directed in the manner shown by
the arrow in the figure accompanying the answer. This
magnetic state of the toroid corresponds to point 2 or
5 on the hysteresis loop (the choice of the point depends
on which of the two directions is assumed to be positive).
If the posi ti ve direction of the magnetic field vector is
the one the toroid acquires during magnetization, this
magnetic state of the toroid is depicted by point 2.
5.41. The circulation integral of the magnetic field is
uniquely determined by the current flowing inside the
contour. Because of this, the circulation integrals along
contours 1, 4 and 5 (see the figure accompanying the prob­
lem) are the same and equal to the current I, while the
circulation integrals along contours 2 and 3 are zero. How­
ever, the situation with the circulation integrals of the
magnetic induction along these contours is quite different.
When the circulation integrals are evaluated along con-
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tours that pass through a homogeneous medium (in the
case at hand, in a vacuum), they do not depend on the
shape and size of the contours, with the result that the
circulation integrals along contours 4 and 5 are equal.
Reasoning in the same manner, we conclude that the cir­
culation integral along contour 3 is zero. But in evaluat­
ing the circulation integrals along contours 1 and 2
that include sections of a medium with a permeability
greater than unity, the circulation elements in this me­
di um are fl times greater than in the vacuum (if I-t is great­
er than unity). For this reason the circulation integral
along contour 1 is greater than that along contours 4
and 5, while the circulation integral along contour 2
is nonzero.

6. Oscillatory Motion and Waves
6.1. Equal deflections from the position of equi librium
oc-cur if

(6.1.1)

where <1>1 === U)t1 and <1>2 === wt2 (as shown in the figure,
the ini tial phase is zero). The x vs. wt curve shows that
condition (6.1.1) is rnet if

sin $2 == sin (n - cD1) .

Here cos Ql 2 ~ -cos <PI' that is, phases <1)1 and <1)2

correspond to velocities of the oscillating point that are

Fig. 6.1

opposite in direction. The phases of harmonic oscillations
coincide if both the deflections and the velocities of the
oscillations coincide (both in absolute value and in direc­
tion).
6.2. The amplitude of the oscillations depicted by
curve 2 in the figure accompanying the question is twice
as large as that of the oscillations depicted by curve 1.
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The periods of the two oscillations coincide. Oscillations 2
lag in phase behind oscillations 1 by a quarter of one pe­
riod. Hence, oscillations 2 arc represented by the cqua­
lion

x = 2A sin (rot - :rrJ2).

6.3. Oscillations 1 have a period that is twice as large as
that of oscillations 2, so that the frequency of oscillations
1 is one-half of that of oscillations 2. Amplitude Al is
twice as large as amplitude A 2 • The energies of these os­
cilIa ti ons are

T,T,Y 1 2A 2
vv 1 === 2 mU)l 1

and W2~+m(t):A;= ~ m(ro;)2(2A 1)2= W 1,

that is, coincide.
6.4. The equation of the motion projected on the .1:

axis is

x = Ax sin tot,

In the case where the object moves clockwise, the deflec­
tion along the y axis at time zero (t = 0) is y = A y , and
then it decreases to zero when the maximum on the x
axis is attained. The sine decreases from unity to zero as
the angle changes from n/2 to n. In this case the initial
phase of oscillations along the y axis is n/2, and the equa­
tion of motion projected on the y axis is

y == A y sin ((ut + n/2).

In the case where the object moves counterclockwise,
the deflection along the y axis is zero when the phase of Ino­
tion along the x axis becomes n/2 and, hence, the Initial
value of this deflection is y = - A y and increases to ze­
ro in the course of a quarter of the period. In the case at
hand the equation of motion projected on the y axis can
be written in the form

y = A y sin (rot - n/2).

6.5. In the first case the oscillations along the y axis
'begin n/2 earlier in phase than along the x axis, while
in the second case they lag behind by the same quantity.
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In both cases the motion takes place along an ellipse de­
scribed by the equation

fX2~ y2

~+A2==1.
l x Y

The two motions differ in direction. In the first case the
motion is clockwise while in the second it is counterclock­
wise. The equations of motion have the form

x = Axsinwt, v, = AI/sin (wt+ ~ ), Y2 = Ay sin (wt- ~.).

6.6. When the deflection along the x axis is zero and
the velocity is positive, the deflection along the y axis
is greater than zero but smaller than A 2 , with y continu­
ing to increase according to the direction designated by
the arrow and reaching the value A 2 (i .e. when (j)t +
(P ~ rt/2) for 0 < wt < n/2. lienee,

o< <p < n/2.

6.7. In the course of one period the oscillating point
attains each of its maximal (but opposite) values once
(i.e. in the motion along an axis). For this reason the com­
plete Lissajous figure touches the sides of the rectangle
limiting the motion exactly the same number of times as
there are periods in the motion of the point in a certain
direction. Along the x axis the figure touches the sides of
the rectangle twice, while along the y axis four times.
Hence

002 = 2w1 and y = A 2 sin (2w1t + qi).

To determine cp, we assign to Wtt the values that corre­
spond to points where the Lissajous figure touches the
limiting rectangle. For instance, if we take Wtt = n/2,
then 2w1t + cp = n/2 + rp. Here

sin (2w1t + rp) = -1.
Hence,

n/2 + rp == -n/2, or <p = -no

6.8. Just like in the previous problem, the number of
periods it takes to traverse completely the Lissajous figure
in either direction is determined by the number of points
where the Lissajous figure touches the rectangle that
limits the motion. There are three such points in the posi-
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tive direction of x and two points in the positive diroection
of y. Thus, the entire figure is traversed in the direction
x in the course of three periods and in the direction y
in the course of two periods. Hence,

w1/w 2 = 3/2.

6.9. The kinetic energy is maximal when the velocity
is maximal in absolute value. Being the time derivative
of displacement, the velocity is maximal at moment 2.
The maximal potential energy is determi ned by the rna­
ximal displacement, that is, the amplitude, and is equal
to kA 2/2. Hence, it is maximal at moment 1. At this mo­
ment the kinetic energy is zero, while the potential ener­
gy is zero at moment 2. The acceleration of the particle
is at its maximum when the second time derivative of the
displacement is maximal. This corresponds to moment
1. Since at this moment the second derivative is nega­
tive, so is the acceleration,
6.10. The period of harmonic osci llations that take place
due to a quasielast.ic force (/? ~ -kx) is determined
from the formula

(6.10.1)

The spring constant k is defined as the force that is required
to stretch the spring in such a manner that the spring
elongation becomes equal to its initial length. In the
case at hand the elongations occur because of the weight
of the loads, with the result that

k 1 = nugll and k 2 = nl 2gl l.

Susbtituting k into (H.10.1), we see that the masses can­
cel out and in both cases the period i s

L~ 2n -V Zig.

The same result can be obtained (to within a constant coefficient)
from dimensional reasoning. There are three quantit.ies that appear
in the problem: mass, elongation, and time (the sought perio~).
In addition, since forces equal to the weights of the ~oads are applIed
to the springs, we may assume that the acceleration ?f gra.vlty p
will enter into the solution. Bearing in In ind tha t the d1mensions of
the left- and right-hand sides of any equation must be the same,
we can write
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where a, h, and c are the exponents of the corresponding quantities.
We havs the following equations for the exponents:

a = 0, b + c = 0, c = -f/2.
IIence,

t = CIC 11/2g1/2,

where ;;C is a dimensionless coefficient, which cannot be found
using solely dimensional considerations. Above it was shown that
this coefficient is equal to 21"[.

The energy of the oscillations of a load can he written
in the form

W = mA2(1)2/2.

Since the periods of oscillations (and hence the frequen­
cies) are equal and so are the amplitudes (by hypothesis),
the load with the higher energy is the one whose mass is
nu,
6.11. In the case at hand thequasielastic force is Archi­
medes' force. When the bottom of the test tube lies above
or below the position of equilibrium by a distance x,
this force is

F == -Sxpg. (6.11.1)

The mass of the test tube together with the mass of the
load is equal to the mass of the displaced water, or

m = ISp.

Using (6.11.1), we can find the "spring constant"

k = I F IIx = Spg.

(6.11.2)

(6.11.3)

Substituting (6.11.2) and (6.11.3) into the expression for
the period of oscillations (6.10.1), we get

L~2nVm/k=2n Vl/g.

We see that l' depends neither on the mass and cross-sec­
tional area of the tube nor on the density of the liquid.
The same result can be obtained from dimensional con­
siderations, just like it was done in Problem 6.10.
6.12. If m o is the known mass and m is the unknown
mass and if 000 and ware the angular frequencies of oscil-
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lations of fhe systems with the known mass an(i tile known
mass plus the unknown, then

wo=Vk/mo, (6.12.1)

(t) == Vk/(mo+m), (6.12.2)

where k is the spring constant. Combining (6.12.1) with
(6.12.2), we arrive at a formula for the unknown mass:

m = mo ( :~ - 1) .

6.13. The total energy of oscillations of a material par­
ticlo can be made equal to the rnaximal kinetic energy or
maximal potential energy of the particle. In the case at
hand it proves expedient to compare the maximal poten­
tial energies, which are specified by the maximal deflec­
tions. When the deflection is at its maximum, the load
(or particle) is at a height h above the posi tion of equil ib­
rium:

h = l (1 - cos a).

Since the expression inside the parentheses is the same for
both pendulums, the pendulum with the greater length
is raised to the greater height and, hence, has the higher
energy.
6.14. Just like in the previous problem, the total energy
can be made equal to the maximal potential energy. Since
the center of gravity of the physical pendulum is high­
er than that of the simple pendulum, the physical pen­
dulum can be thought of as a simple pendulum of smaller
length. Thus, the given simple pendulum has a higher
energy.
6.15. In the case at hand the disk constitutes a physical
pendulum. The period of oscillations of a physical pendu­
lum is given by the formula

T=2n (m:Rcf/2.
The moment of inertia of the disk about the center is
J = mR2/2. According to Steiner's theorem,

J = m (R2/2 + R~),

whence

[
(R2/2 + R~) ] 1/2

T::=: 2Jt R •g c
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As expectcrt, the period does not depend on the nH1SS of
the pendulum.
6.16. The angular frequency of oscillations for a physical
pendulum is

where In is the mass of the pendulum, and .J is the pen­
dulums moment of inertia. If the distance Irorn the con­
l.er of gravity to the point of suspension is l1c , then, ae­
cording to Steiner's theorem, the moment of iuorti a of
the rod about the suspension point is equal to the moment
of inertia of the rod about the center of gravity plus the
moment of inertia of a materi al particle whose mass is
that of the rod about the point of suspension:

l:l.
J =:. 72 -1- mll~.

Thl1~,

(
12gRc ) 1/2

ell ==
. 12 . I 1211~ •

1'0 finrl the ext.rcmum, we nullify tho derivative of r»
wi th respect to R c:

(](I) Gg (12 --" "12Rg)
dne RI/2 (12+ 12I1D~/2 =~ o.

Whenee
lR; =".: --_ ~ 0.29l.

> 2 1/3

6.17. The accelerat.ion varies according to tho same Iaw
as the force. Thus,

t
F) 1. ]/0v === -' si n (,)t d t ==.-- -- (1 - cos (ut) :::-:: D,ll (1 - cos (Ill).m moo .

o

Tho u vs. t curve is depicted in Figure (a) accompanying
the answer. If the initial position of the point is taken as
the origin, then

t

x =-~ Urn r (1 - cos (J)t) tIt :--=- urnt - Vm sin rot.J co
o



Thus, we have found that the particle is in translational
mot.ion with a velocity that periodically i ncrcnsos Irorn
zero to its maximum, equal to 2vm , and then drops off to

v

(n)

Ftg, 6.17

(b)

zero. The mol.ion i s depicted schematic all y in Figure (h)
accompanying the answer.
6.18. The solution to this problem is sirni Iar to that of
Problem 6.17, the di fiercnco being that the initial phase

o ~ tOt

(a) (b)

Fig. 6.t8

of the driving force is different. . .IJI tho case at hand, im­
tiall y the force is maximal. The Limo dependence of the
velocity is

t
Fo ) . . t Fo • t '. tv == - eos tl) zzz: - SIll <'0 =--= UIll SIll ffi •
In mt»

o
In eon trast to the previous case, l he veloci ty changes i is
direction during motion (Figure (3) accompanying the
answer). The displacement of the particle can be found
after integration:

f

X ::-- V
n l

rsin (1)1 =-:--: Vm (1- cos rot).J (I)

()

Thus, in the case at hand the motion is purely harmonic,
as shown by the CU['VO in Figure (h).
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A comparison of tho results of the previous problem
with those of the present problem demonstrates that the
motion of a material particle under a force that varies ac­
cording to the harmonic law depends on the initial phase
of the force. The motion may vary from purely translation­
al to purely oscillatory. These features of a periodic force
manifest themselves in various phenomena, say, in
high-frequency electric discharge in gases, where the mo­
ments of collision of electrons, ions, and atoms accompa­
nied by changes in velocities occur at di fferent phases of
the applied variable electric field.
6.19. If the amplitude decreases with the passage of
tirne according to the law

A = Aoe-~t,

t.hen , since the oscil lation energy is proportional to the
square of the amplitude, the decrease in energy occurs ac­
cording to the law

W == W oc-2Bt , or In W = In W o - 2~t.

The slope of the straight line that expresses the decrease
in energy on the semilogurithmic scale must he double

x -l

I"ig. 6.19 Fig. 6.20

the slope of the straight line that expresses the decrease
in amplitude.
6.20. The figure accompanying the problem shows that
the initial phase is n/4 whi Ie the ratio of the amplitude
whose phases differ by 2n is eq ual to 1.5. This means that
the logarithmic decrement In (A n+1/A n ) is approximate­
ly equal to 0.4.
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6.21. Initially the velocity of the pendulum is zero and
tends to zero as the pendulum approaches its position of
equilibriurn, so that it first grows and then, after passing
through its max imurn , decreases. We can arrive at the
same conclusion after analyzing qualitatively the differ­
ential equation of the motion of the pendulum written

1«1

(a)

Fig. 6.21

(b)
·t

in polar coordinates in the common approxi matiou of
small deflections:

Ia = -qa - rae

\\Te select a system of coordinates in which the positive
direction is the one in which the pendulum was initially
deflected from the point of equilibrium. Initially, when
the velocity was zero and the deflection was the largest,
the acceleration was the highest. The curve depicting the
time dependence of the deflection has at this point the
greatest curvature. In the process of motion , the first
term on the right-hand side of the equation decreases in
numerical value, while the second term (which is positive

since ~ < 0) grows, and because of this the absolute val­
ue of the acceleration decreases. There finally comes a mo­
ment when the acceleration vanishes and the velocity
reaches its maximum. After that the acceleration grows,
that is, becomes positive and increases in numerical val­
ue, which in the system of coordinates employed here
implies deceleration, and the pendulum asymptotically
approaches the position of equilibrium. The time depen­
dences of the absolute values of the deflection and the ve­
locity of the pendulum are shown in Figures (a) and (b)
accompanying the answer.
6.22. In damped oscillations the damping factor is
smaller than the natural frequency of free oscillations of
the system: ~ < WOo In aperiodic motion the situation is
reversed: ~ > 000. The damping factor is defined as the
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ratio ~ = r/2m, where r is the resistance of the medium,
and m is the mass of the load. Both quantities remain un­
changed, and so does p. To go over to the aperiodic mode,
we must Inake W o smaller. Since (Do = ykfm, we must
diminish k since m is fixed. At a given elongation force,
the elongation of the spring is proportional to the initial
length of the spring. Hence, the spring constant is inverse­
ly proportional to the length of the spring, with the re­
sult that we must increase the length of the spring if we
wish to diminish k.
6.23. (1) The condition for an aperiodic discharge is
~ > 000. The damping factor

(6.23.1)

does not depend on the capacitance. To make the process
aperiodic.Twe must diminish the natural frequency,
which ~or a fixed_inductance means increasing the capa­
citance, and the easiest way to do this is to bring the
plates of the capacitor closer together.

(2) According to (6.23.1), to decrease the damping fac­
tor for a fixed resistance, we must increase the inductance.
To preserve the value of the natural frequency Wo =

1/VLt), the capacitance must he decreased by the same
factor. The frequency of the damped oscillatious.l

co === V{Oo - ~2,

increases in the process, approaching (do'

(3) When the resistance and inductance are decreased
simultaneously, the damping factor remains unchanged,
but for a fixed capacitance the oscillation period 11 ==
2:rtfyw~ - B2 decreases and, hence, so does the loga­
rithmic decrement.
6.24. Both the logarithmic decrement and the period
depend on the damping factor:

e = ~T

T == 231fV (t)~ - ~~

(6.24.1)

(6.24.2)

Since the lengths of the pendulums are equal, the natural
frequencies of free oscillations (that is, wi thout resis­
tance) are equal, too. The damping factor is

~ = rl2m, (6.24.3)



where r is the resistance of the medium, which is the
same for the two pendulums, Substituting (6.24.3) into
(6.24.1) and (6.24.2), we see that both the period and tho
logarithmic decrement I of the sphere with the smaller
mass are greater.
6.25. There is no periodic driving force in the system;
hence, the oscillations are not forced. The oscillation fre­
quency is determined by the mass and by the elastic prop­
erties of the spring, and since the amplitude of the oscil­
lations remains unchanged, the oscillations are undamped
although, of course, loss of energy is inevitable. This loss
is compensated by the energy stored in the DC source.
Thus, the oscillations belong to the type that occur with
a natural frequency but with replenishing the energy from
an external nonperiodic source, that is, self-oscillations.
6.26. The frequency dependence of the displacement am­
plitude in forced oscillations is given by the formula

A- Fo
- m V(Ct>~_0)2)2+4~2{J)2 '

while the frequency dependence of the velocity amplitude
is given by the formula

, FoCt>
DIn:':"': m V «(U~ - (02)2 ---1- 4~2W2 •

In the first case, at w == 0 the amplitude A does not van­
ish but becomes equal to F olm(fJ:, or Flk, so that the curve
cuts off a segment on the vertical axis, which segment
is the displacement under a constant force. The velocity,
of 'course, is zero in this case. Thus, the curves in Figure
(a) correspond to the frequency dependence of the displace­
ment amplitudes, while the curves in Figure (b) cor­
respond to the frequency dependence of the velocity ampli-"
tudes. The smaller the damping factor ~, the higher
the curve in tho respective diagrams. The damping factor
also determines the position of the maxima of the dis­
placement amplitudes:

(ures ==- V(()~ - 2~2.

The maximal velocity amplitude for all damping factors
is achieved at co === (UO.

6.27. The displacement A 0 at (I) == 0 is deterrni ned by
the ratio of the maximal force If' to the elastic constant
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k (the spring constant), or A = F/k. By hypothesis,
both F 0 and k remain unchanged, whereby A does not de­
pend on the resistance of the medium. The resonance fre­
quency, defined as

(Ores === 1/(I)~ - 2~2 ,

is the closer to the natural frequency the smaller the val­
ues of the damping factor ~. Since the latter is defined as
f1 == ri2m and the mass of the oscillating object remains
unchanged (by hypothesis), ~ decreases and W res grows
as r drops. The amplitude at the resonance frequency,

/1 -- F 0

.J. res - 2~ln V ~_~2 '

is the higher the smaller the resistance of the medium.
6.28. rrhe differential equation describing the behavior
of the system is

.. .
mx + rx + kx == Fo sin wt, (6.28.1)

and it has two solutions, a steady-state and a transient.
The latter describes the process of setting in of forced os­
cillations. Usually only the steady-state solution is con­
sidered. However, at r = 0 and co = 000 this equation
has no steady-state solution, and because of this the am­
plitude continuously increases and so does the energy of
the system, which energy is taken from the source of
oscillations. In reality, a system in which the resistance
of the medium is negligible for all practical purposes
either behaves in such a manner that the amplitude reaches
values at which Hooke's law ceases to be valid (and, re­
spectively, Eq. (6.28.1) loses meaning) or is destructed.
One must bear in mind also that the fact that we ignore
the resistance of the medium, which at low velocities is
a valid assumption, cannot be justified as the veloci ty
grows higher and higher.
6.29. The resonance frequency is the same for both os­
cillations:

cures == V (J)~ - 2~2.

Since the natural frequencies also coincide, so do the
damping factors B. The resonance amplitude is

A - Jlo
res - 2~m y ro~- ~~ •



Only two quantities in this formula can vary: the mass of
the osc-illating object and tho amplitude of the driving
force. However, from the fact that the natural Irequen­
cies are the same and the darn ping factors are the same, it
follows that for di fferent masses only the elastici ty coef­
ficients and the resistances di ffer:

roo == -V kim, ~ == r/2m.

But by hypothesis, the systems are supposed to differ
only in one parameter. This parameter, therefore, can
only be the amplitude of the driving force, which for one
system is twice as high as for the other.
6.30. According to Huygons' principle, each point of a
wavefront is an independent source of oscillations. All ap-

Fig. 6.30

erture whose width is much smaller than the wavelength
limits a section of the wavefront (a line in the present
case) that can be considered as a point source. This
source emits approximately semispherical waves that
propagate in space; in the case at hand these are approxi­
rnately semicircles with di fferences in radii between the
neighboring waves equal to one wavelength.
6.31. Since the frequency of the oscillations remains
constant, the energy carried by the wave is determined
uniquelly by the amplitude, that is, is proportional to
the square of the amplitude. The amplitude at a crest
Al is equal to the sum of the amplitudes of the incident
and reflected waves, Al and A 2 , while the amplitude at a
node, An' is equal to the difference between Al and A 2 :



Henco , the ampli tudes of the i ncitleut and reflected waves
are

lIcnee,
A2 A}--A n AI/A n - 1 0-1
~ AI"+A n AI/An+1 _.- t)-t-1 •

Tho ratio of the energy of the reflected wave to that of
the incident wave is equal to the ratio of the squares of
the amplitudes:

~: ccc ( ~+~ r.
Helice, the ratio of the energy that has passed the obsta­
cle to the energy of the waves incident Oil the obstacle
is

Wa ( 6-1 )2 48
Wl=~-1- 8+1 ==(6+1)2·

When the amplitudes are equal (6 == 1) no standing waves
are formed and the entire energy passes the obstacle.

In the theory and practice of propagation of waves (say,
electromagnetic waves) a common notion is that of the
standing-wave ratio, which is the ratio of the energies (or
squares of amplitudes) at crest and node. Obviously, in
an ideal standing wave this ratio is infinite.
6.32. The figure accompanying the problem shows that
tho amplitude decreases ten-fold over a distance equal
to four wavelengths. Denoting the amplitude near the
source by AD and the amplitude at a distance of four
wavelengths frorn the source by A 4 , we can write

A o/A 4 ~ 10, or log (A o/A 4 ) === 1.

In natural Iogurithrns,

III (A 0/A 4) ==-= 2.3.

For the arnplitude at a distance of one wavelength Irorn
the source we have

In (AD/A!) == 2.3/4 == 0.575,

whi Ie for the am pli tude at a distance of z from the
source we have

In (AoIA z) = O.575z/A.
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'whence
A z ~ Ao exp (-O.575z/~).

This dependence is often expressed in terms of the wave
number k, which is related to the wavelength as follows:
k = 2rt/A. Thus,

A z == Ao exp (-0.0916 kz).

6.33. The statement is false. The density of the gas,
whichisin the den 0 minato r 0 f for I n II Ja (() .33. 1), i s dc­
termincd by the ideal-gas law thus:

p == pMIRT, (G.33.1)

where M is the molecular mass (weight) of the gas, and
R is the universal gas constant. If we substitute this val­
ue of the densi Ly into (6.~13.1), tho pressure cancels out
and we get the Iorrnula

c== 11 yRl'/M, (G.3:3.2)

according to which for gi yen gas the speed of sound de­
pends only on tho temperature of the gas. Actually, the
temperature dependence is somewhat more complicated
than simple proportionality to 1'1/2, since...in diatomic and
especially multiatomic gases the specific heat capacity
at constant volume grows noticeably with temperature.
6.34. According to formula (6.33.2), the speed of sound
in a gas is proportional to the square root of y and
inversely proportional to the molecular mass. At a fixed
temperature the difference in speeds of sound is deter­
mined by the ratio 'VIM. For water vapor (six degrees of
freedom) y = 1.33 and for neon (three degrees of freedom)
y = 1.67. The molecular mass of water is 1.8 X
10-2 kg/mol and that of neon is 2.02 X 10-2 kg/mol.
The ratios ylM is 74.1 for water vapor and 82.5 for neon.

Thus, the upper straight line depicts the temperature
dependence of the speed of sound in neon and the lower
one depicts the temperature dependence of the speed of
sound in water vapor. Both straight lines have the same
slope equal to 0.5. A calculation via formula (6.33.2)
yields 454 rn/s for neon at 300 I( and 430 mls for water va­
por at the same temperature.

269



6.35. When the source is mov ng and the receiver is
fixed, the registered frequency s

1
V1==-VO i-vIc'

while when the source is fixed and the receiver is moving,

"2 = Vo (1 + vic).

The first formula implies that V 1 grows without limit as
vic tends to unity (curve 1 in the figure accompanying
the problem), while "2 increases linearly as vic tends to
unity (curve 2 in the same figure).
6.36. When the train is moving with a speed v and the
speed of sound is c and the frequency measured by an ob­
server on the train is Vo (better to say, when the train is
at rest), the frequency registered when the train ap­
proaches the observer standing at the roadbed is

'V - "0
1 - 1- u]« ' (6.36.1)

while the frequency registered when the train is moving
away from the observer is

"2 .~ 1. ~:/C · (6.3G.2)

For the sake of brevity we introduce the notation vIiv 2 =
6 and vic === ~. Then

() _ 1+~
- 1--~ ,

whence ~ = (6 - 1)/(6 + 1), or

(6.36.3)

Substituting (6.36.3) into (6.36.1) or (6.36.2), we g-et

"0 = "1 (i-vIc) = "2 (i + vIc) = 2Vr2 ."1 "2
6.37. When the observer stands far from the line along
which the source of sound is moving, the equation that
describes the Doppler effect contains not the velocity of
the sound proper but its projection on the direction of
propagation of the wave. For the observer that stands
very near to the moving train this velocity is practically
that of the train and varies suddenly, and so does the
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pitch of the sound heard hy that observer (curve j in the
figure accompanying the problem). For the observer that
stands at a rather big distance from the moving train,
the projection of the velocity varies more smothly, drop­
ping to zero when the train is closest to that observer and
then increasing. For this reason the time it takes the reg­
istered frequency to change is greater (curve 2).
6.38. If for an immobile source the wavelength is Ao'
the wavelength 'A when the source moves with a velocity
v is shorter than Ao by vTo- The waves will arrive at the
obstacle having the frequency

c c 1
v1 == T == Ao-vT =="0-1---v-/c-·

The waves will reflect from the obstacle but will retain
their frequency and wavelength. Since the receiver is
moving toward the waves with a velocity v with respect
to the medium, the relative velocity of the receiver and
waves is c + v and the registered frequency is

_ C+v __ C -1-- v C+v 1 -1- v/ C

"2 --- -A- ~-- c/vo- vivo =----= Vo c- v == "0 1-- vic ·

6.39. At frequency Vo the wavelength in still water is
Ao == c/vo. In a river whose waters flow with a velocity v,
the wavelength downstream is by vT longer than Ao
and the wavelength upstream is by vT shorter, that is,

A = Ao ± vT.

In relation to the receiver that is down the stream, the
velocity of the received waves is the sum of the velocity
of waves in still water and the velocity of the river waters
(as if the receiver was moving against the waves). For
the receiver that is up the stream the velocities are sub­
tracted from each other, with the result that

C = Co ± v.

The frequency v registered by a receiver is the ratio of
the speed of sound to the wavelength, or

_ Co ± v _ Co ± v
v-- - Vo•Ao ± vT co/vo ± vivo

We see that v is equal to the frequency of the oscillations
generated by the source.
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6.40. The wavolongth of waves general,{\d hy a source
moving in a stationary medium is

f.w = ""0 + vT,

where the minus sign corresponds to the propagation of
waves from the source forward, while the plus sign corre­
sponds to waves propagating backward. When the receiv­
er is in motion, its velocity with respect to the waves is

C = Co + v.

Here the plus corresponds to motion against the wa ves,
while the minus corresponds to motion in the same direc­
tion as the waves propagate. Since the velocities of the
boats in relation to waves are different and the distance
between the boats remains unchanged, the time it takes
a signal to travel from one boat to the other depends all
which boat is the receiver and which boat is the source:

l
t~ •

Co ± v

If the boats could move with a speed equal to the speed
of waves, then the boat moving ahead of the other one
would cease to receive any signal, since the signal could
not catch up with it. The frequency of the signal received
by each hoat is defined as the ratio of the velocity with
respect to the waves to the receiver wavelength. For the
boat floating at the rear,

._ co+v _ 1+v/co
== 'Vo'v--_· -

(1+vic) 'VOlAo+vT

and for the boat floating in front,

co-v 1- v/co
'---:"0·v=-=: - (1- vic) 'VOlAo-vT

In both cases the frequency of the received signal is equal
to that of the sent signal.
6.41. The times of arrival of longitudinal and trans­
verse waves arc, respectively,

t/1 = Slv" and t.l = Siv1.,

where ull and v.l are the velocities of propagation of the
longi tud i nal and transverse waves, and S is the distance
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between A and B. The ti me interval between tho arrival
of longitudinal and transverse waves is

whence

L.~ :::-.:.:.: V IIv J. ~ t .
lJ II - IJJ_

If the .seismogr~phs are placed at two points, then by
measurmg the distnnces 8 1 and 1..')2 (see the figure accom­
panying the answer) we can
establish at which point the
source of explosion is located.
In fact, in this way the epicen­
ters of earthquakes are located.
6.42. The speed of sound waves
in air is C1 ~ 330 mls and
in water it is c2 ~ 1500 rn/s.
According to Snell's law,

sin aI/sin a 2 = c1lc2 •

Accordingly, when the "sound :Fig. 6.41
beam" enters the wate r, it wi ll
be deflected from the perpendicular line sti ll strong­
er and angle a 2 becomes greater than angle a l • The
velocity ratio deterrnines the maximal angle at which
sound waves can go "into" water. The maximal angle of
incidence am· satisfies the condit.ion (a 2 == 90°)

sin am = C1/C2•

At C1 ~-= 330 luis and C2 == 1500 mls we have sin am ===
0.22 and CG m ~ 13°. At an angle greater than 13°
total reflection occurs, Such a situation is depicted in the
figure accompanying the problem.

The perturbation caused hy the incident wave pene­
trates the surface of the water but dies out exponentially,
and this happens the faster the greater the angle of inci­
dence of the wave. The wave dies out practically at a
depth of the order of one wavelength. Sometimes one can
hear a fisherman whisper: "Keep quiet! The fish is here!"
The above estimate shows that a person standing at a
distance away from the rivorbank can never "scare" tho
fish.
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6.43. Imagine a plane that" is parallel to the surface of
the earth. Tho sound that an explosion generates and that
propagates at a certain augle a to the nurrnal to this plane
will be deflected sl.il 1 grca tel'. As SHoll' s Ia w shows,
this happens when the speed of sound increases with alti­
tude. Thus, the curve that represents the path along
which the sound wave propagates suggests that the speed
of sound increases continuously with altitude. Since the
speed of propagation of waves in a gas is proportional to
the square root of the temperature, then, hence, the behav­
ior of the curve of sound propagation (see the figure ac­
companying the problem) can be explained by the fact
that the air temperature increases wi lh alt.i tude.
6.44. Both longitudinal and transverse waves call trav­
el ill the eart.h. -Tho r'1I'St are partially reflected by water
and partially transrnittcd through water, while the second
are completely reflected hy water. The reflection of the
longitudinal and transverse waves can be used to estimate
the upper boundary of the water pocket. The longitudi­
nal waves will be partially reflected by the bottom of the
pocket. Thus, to measure the depth of the pocket one can
use only longitudinal waves.
6.45. For tho 0 bscrver to heal' the sound of the airplane
from a distance a earlier than the sound arrives from
point A that is directly above the observer, the time it
takes the sound to travel from airplane to observer must
be shorter than the time it takes the airplane to fly the
distance a plus the time it takes the sound to travel from
point A to the observer. The first time is

t1 == Va2 + h2/c,

while the second is

t2 = alv + hie,

where c is the speed of sound. The above-stated condition
can be written thus:

Va2 + h2 a h--c--<V-+c·

If we square both sides of this inequality and carry out
the necessary manipulations, we get
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The ratio vic == M is known as the Mach num her. Then
(G. 4.S.1) ('an he \vritten (, hus:

< 0) M I
a ~ M2_1 i,

If, say, the airplane is flying with a speed double the speed
of sound, the maximal distance from which the sound
will arrive sooner' than when the airplane appears over­
head is equal to (4/3)h.

7. Alternating Current

7.1. The segment of the cross section of the loop of
width dr and height h is penetrated by a magnetic flux
whose instantaneous value is

d<l> = Bh dr,

where B = ~oI/2nr. Whence

R2

<D = flok ] \ ~ ==-= J10hl In 112

2n J r 2n R I •
RI

The flux coupled with the loop is

'I' == flak! N I /12

2n n 111 •

I
I
I
t

Fig. 7.2

The current in the cond uctor is .l = locos (t)l. Tho emf
induced in the loop is

(J. ::= _. d'l' .--::: P-ohloNw In Il 2 sin (1)[.

l dt 2n R 1

Finally, the effective value of this emf is

~tohN(ijIeff R 2
~i elf:=': In -R ·2rt 1

7.2. The figure accompanying the problem shows that
the capacitive reactance is four times the inductive reac­
tance. If the frequency is doubled, the first quantity
will decrease by a half and the second will double, which
means they will become equal. As shown by the figure
accompanying the answer, the ratio ~o/Io will decrease,
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and since 00 11111S(. remain unchanged, the current grows.
Tho same result can he ohtained analytically. Tho mnpli­
tude of the current ill the circuit is

I == ~o
o .. / ( 1 )2 ·JI R2 -t- ero - £ro

Prior to the change in frequency, 1IC(t) > Lui, and hence

( ~(J) - LwV> O.

After the frequency is doubled, 1/ew = Los, Here 10 =
~o/R.
7.3. The current in the circuit containing a resistance
and an inductance connected in series is

I = 10 sin (rot + cp),

where the amplitude value of the current is

[ ~~=---. ~o or I =;:. ~o
. 0 R cos cp--I.l(J) sin <p , 0 l1R2+ £20)2 '

and the tangent of the phase of the current with respect
to the voltage is

tan q> = -Lw/R.

Frorn these ex pressions it follows that as the frequency
grows the lag of the current phase in relation to the voltage
phase increases, which results in a decrease in the cur­
rent. The average power in the circuit is defined thus:

p ~ ~ '00 ' 0 cos !po

As the frequency grows, the amplitude of the current de­
creases and so does the power factor, which is the cosine
of the phase shift between voltage and current, The power
will also decrease as a result.
7.4. The current in the circuit containing a resistance
and a capacitance connected in series is

I = 10 sin (rot + fp),

where the amplitude value of the current is

T ".-==. ~o or I "=: ~o
. 0 Il cos (p+(1/Cro) sin q> , 0 V R2+1/C2ro2 '
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and the tangent of tho phase shift of the current with re­
spect to the voltage is

tan <p = 1IRCw.

From these expressions it follows that as the frequency
grows the phase shift by which the current leads the volt­
age decreases and tends to zero, while the current grows.
The average power in the circuit, defined as

1
P =:-:: 2 ~oI0 cos q>,

increases with frequency, since cos {p tends to unity, and
so does the amplitude value of the current.
7.5. The figure accompanying the problem shows that
the current leads the voltage in the phase by 0 < (P <
n/2. This happens if a capacit.ance is connected in se­
ries with the resistance.RJ10I

102 IQ~
(Cl)

Fig. 7.()

7.6. FOI' the ease shown in Figure (a) accompanying the
problem, we can write (if we ignore the resistances of
the ammeters)

It = ~ sin wt r: /01 sin tot;

12 = f~ sin ( rot - ~ ) "--= -102 cos {Ill,

where Uo is the amplitude value of the voltage between
points I and 2. The current l:{ Ilowi ng through arnrueter
A3 is the sum of currents /1 and l~:

/3 = /03 sin (wt + (p)

(the vector diagram of currents is depicted in Figure (a)
accompanying the answer). The am pl it.nrlo va lue of cur­
rent 13 is
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and the phase shift of the current in relation to the volt­
age is

tan rp = - I 02/I 01·

Since the ammeters measure the effective value of the cur­
rent, leff == I oIV2, we have

13eff :.::= -V 11err + I~cff •

In the case shown in Figure (b) accompanying the proh­
leu}, just like in the previous one, the currents that flow
through tho resistance and the capacitance differ in phase
by n/2, the only difference being that here the current
flowing through the capacitance leads the applied voltage,
while the current flowing through the inductance lags
behind the voltage. The corresponding vector diagram is
depicted in Figure (b) accompanying the answer. The cur­
rents measured by ammeters Ai and A2 are

II == (Uo/R) sin wt = /01 sin wt,
12 = UoGw sin (rot + 1t/2) == 10 2 cos <JJt.

'l'he ampli tude of the current measured by ammeter AS
is

103 ~: ·V /:1 + 1~2'

while the tangent of the phase shift is

tan (p = 102/ / 0 1 •

The current measured by ammeter A3 is

13eff =::: -V 11err +I~rff < I teff +12cff •

7.7. For the case depicted in Figure (3) accompany! ng
the problem, the voltage between points 1 and 2 is

U1 == .loR sin wt = U01 sin wt,

while that between points 2 and 3 is

U 10 • (t rr ) 10 U2 :_".: em SIn (}) - 2: ~ - Cw cos (J)t ~.: - 02 cos (ot

(see the vector diagram in Figure (a) acc.ompanying the
answer). The voltage between points 1 and 3 is tho sum of
[[I and [!2:

U3 = VI + U2 == U0 3 sin (Dt -f- q-).
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Its ampli tune value is

U03 ~-: -V l}~l + U~2'

while the phase shift with respect to the applied volt.ago
is given by the following formula:

tan (p = -U0 2/U0 1 •

Since the voltmeters measure the effective value Ueff =

Uo/V2, we have

V 3eff == VllIeff + U~eff< U 1eff + U zerr-

For the circuit depicted in "Figure (b) accompanying
the problem, just like in the previous ease, the voltages

U
01 E0_,--_~__m __o 0_0__0 -_._--"""'t-.....!:::

(b)

Fig. 7.7

across the resistance and the inductance differ in phase by
n/2, the only difference being that here the current
flowing through the inductance lags behind the voltage,
while in the previous case the current flowing through the
capacitance leads the voltage (and, hence, the phase shift
between the voltages across the resistance and across the
capacitance is -n/2). The respective voltages are

U1 = [oR sin wt == UOI sin (ut,

U2 = [oLeu sin (wt + rt/2) == U0 2 cos wt

and

U"d == U3 si n ((t) t + (p)

(see the vector diagrarn depicted in Figure (h) accotn­
pnnying the answer). The amplitude value of the voltage
is

U03 ~'o: VlJ~l -t- U~2·

The effocti ve voJ tages measured hv the vol l.mel ers are re­
lated thus:

USerf ~ 0\1 Ule ff -1-lJQeff < U ten "1- Uz-rr-
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The tangent of the phase of the voltages is

tan cr == U0 21U0 1"

7.8. In the first case we have resonance, at which the
voltages across the capacitor and the inductance,

Uc >: ~~ sin (wt - JT/2) and

lJL =:- JOl:ll.) sin (td +- Jl/2), (7.8.1)

are equal in magnitude and opposite in phase. From
Eq. (7.8.1) and the fact that a capaci tor and an inductance

(Q)

.~ig. 7.9

( b)

connected in series do not change the current it fO]}0\V8

that

For the case where a capacitance and an induct.ance are
connected in parallel , in each of those clements there flows
a current

1I/(l si 11 (lJt + Jl/'2).
W.I

The total current is

1 =:= Uo (G"U) - 1./Lw) cos cci;

aIl d, ~ inco C (J) =~. 11L (I), we Itave

I ::.-= I c +. I IJ ~ O.

7.9. If the voltage varies according to th« law

U == Uo sin rot

and there is a definite phase shift hetween voltage and
current, so that

I == I 0 si n (wt + cp)



(where the phase di fference 'P rna y be ei t.her posi t.ivo or
negative), then the instantaneous value of the power is

P = Uol o sin (wt + rp) sin tot,
If we write

sin (ffit +.-p) sin wt :__: sin2 (vt >: cosrp + sin (ut >~ cos wt X cos 'P

z.: - ~ [(1- cos 2c:ot) cos IV -1- sin 2c:ot •• si I) Ip1,
we get

Po",; [cOSIp-COS(2ult+Ip)]Uo/o'

The maximal value of the power is

P max = -}Uolo(cos e +1).

while the minimal value is

1
].J1ll i ll = 2Uo/o (cos qy-1).

Whence, the power factor is

cos (p:...::...:, Pmax+ Pm l n
P m nx - ·· Pndn

(7.9.1)

(bear i n min d t hat P 1ll i Ilis 11 ega t i ve).
Formulu (7.U.1) .shOWH that. the frequency of power va­

riution is twice the frequency of tJIC applied voltage. Dur­
ing one period of voltage variation the power passes twice
through tho maximum and the minimum.

Here are SOIne particular cases.
(1) <p :::= O. The load is a purely active resistance. In

this case (Figure (a) aceompanying the answer) Pm in == 0
and P m a x = Uol o.

(2) rp == +n/2. The circui t co nt.ai us only a reactive
element, that is, a capacitance or an i nd uct.ance. Since
in this ease cos q; :....:..= 0, we have (see Figure (b) accornpa­
nying the answer)

Pmax == -Pm in •

The work performed by the AC source over one period of
variation of the power is zero. This means that during
one half of the period the energy flows from the AC source
to the reactive element in the form of the electrostatic
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energv of the capacitance or the magnetic energy of the
inductance, while during tho other half the energy is re­
turned to the AC source.
7.10. When a watch is inside the solenoid, the magnetic
field generated by the solenoid forces the steel parts of

the watch to change periodi­
cally their magnet.iz.atl on , fol­
lowing the hysteresis loop. When
the watch is slowly removed

--+-f-+-+i~+---H Irorn the solenoid, the magnetic
field acti ng on the watch
gradually decreases, and as the
periods pass, the hysteresis loop
shrinks, Each second ;)0 hysLer-

t"ig. 7.10 esis loops are traversed, each
hei ng smaller than the previous

one (the number "50" appears because the frequency of the
AC source is usually 50 lIz). This process is roughly sketch­
ed in the figure. When the watch is completely removed
Irom the magnetic field, it proves to he cornpletely demug­
netized.
7.11. At the moment when the "plus" of the vol tagc is
at terminal a (see the figure accompanying the problem),

(u) ( b)

Fig. 7. t t

the current passes through diode 2, resistor R., diode 3,
and returns to the AC source through terminal b, which
has the "minus" of the voltage at that moment. After the
applied voltage changes sign, the current from terminal b
passes through diode 4, resistor R, diode 1, and returns to
the AC source via the nogati ve terminal a. Thus, the cur­
rent that passes through R consists of a series of alternat­
ing halves of sinusoids (Figure (a)). The average value
of the current over one or' any integral number of half-pe­
riods is

'1'/2
'210 \. «), 21

I av Tffi ~ sill (t)t <it :.-. T(u ---rf- ~ () .(1:17 10 •

o
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III carrying out this calculation in accordance with the
co nd i tions of the problem, it was assumed that the volt­
age drop across the diodes is negligible and that the recti­
fication process does not alter the sinusoidal nature of
the ernf. As for the emf that is generated in the secondary
winding of a transformer whose primary winding is the
load resistance R, it must have two opposite symmetric
sections, since each half-period of the pulsating current
has an ascending section and a descending section. An
idealized curve of the vollage in the secondary winding
of a transformer is shown in Figure (b). Actually, the
curve is much smoother because of the inductance of the
transformer, which plays the role of a choke coil, the in­
terturn capacitance, and other factors. The approxirnate
shape of tho voltage curve on the transient sections is
depicted by a dashed curve.
7.12. After> the rectifier the current branches out. (sec
the arrows in the figure accompanying the pro hlem). A

Fig. 7.12

Iract.ion of the current flows through resistor R and a frac­
tion is used to charge the capacitor. If the" internal re­
sistance of the source (together with the diodes) is low,
then the voltage across the capacitor is equal to the volt­
age at the "out" terminals. This occurs as long as the
voltage is lower than the maximum of the pulsating volt­
age. After the voltage passes the rnaximum, it falls off
and becomes lower than the voltage across the capacitor.
Because of this the capacitor will begin to discharge
through the resistor, with the voltage across the capa­
cit.or decaying aceording to the law

U == U; exp (-tiRe)

(the discharge current is designated by arrows in the figure
accompanying the answer). The greater the capacitance.
the slower the decay, which conli nuos u nt.i l the voltage
across the capacitor becomes equnl to the gro\ving voltage
in the Iollowi ng half-wave. Then the capacitor is charged
to the maximum of the voltage anew. The process
conti Hues ill this manner. Thus, a capa~i tor i II the ci rcui t
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makes the "out" voltage smoother. and the higher the
capacitance the stronger the effect. The curve represent­
ing the time variation of the current flowing through the
resistor follows the voltage curve in parallel.
7.13. For both directions of the emf applied to the trans­
former, the current is limi ted by the diode introduced
into the circuit in the blocking direction. This current is

[
~--,J

(.b)

Fig. 7.13

(0)

caused by the motion of the minority (intrinsic) charge
carriers and reaches a plateau very rapidly as the voltage
is increased. The diode introduced in the conducting di­
reel.ion does not limit the current. For this reason, the
osci llogram of the current ill the primary circuit has the
form shown in Figure (a). Accordl ngly, the greater frac­
tion of time in each half-period (in each direction) the
emf induced in the secondary winding is zero. Only over
small time intervals when the current passes through ze­
ro does an emf emerge, first in one direction and then in
the other (Figure (b)). The osci llograrns here are, of
course, only rough sketches, since they do not take into ae­
count the inductances in the transformer circuits, Note
that in modern sernico nrluctor diodes the reverse current
is negl igi ble, wi th the result that the prohlem is of purely
academic interest.
7.14. In some respects this problem resembles the pre­
vious one. Here, too, the current in the primary circuit is
limited to the saturation current in one of the diodes,
Introduced i nl.o the circuit in the conducting direction
rather than ill the blocking. In contrast to Problem 7.13,
the present one possesses a special feature that manifests
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itself in the init.ial section near the zero of the current
in tho circuit. While in a semiconductor diode the eUl'rellt
increases with voltage alrnost Iincnrl y in the initial sec­
tiou , in a vacuum diode the voltage dependence of the

0.6

0.2

o 0.2 0.6 LD 14 o;

(a)

( b)

Ei

(c)

Fig. 7.t4

current is described with sufficient accuracy hy the three­
halves power law I == K [J~J2.

The constant K incorporates uni versal constants and the
distance between the electrodes in the diode. Si nco tho
voltage varies with time according to the sinusoidal law,
the current flowing through the diode on the initial sec­
tion of the voltage increase must he writton in the form

I = K ~/2 sin3J2 rot

(the function f (a) =:= sin3
/
2 a is depicted in Figure (a)).

Allowing for this dependence, we obtain the oscillograms
of current in the primary circui t (Figure (b)) and of the
emf in the secondary circuit (Figure (c)). Just as in the
previous problem, we have not allowed for the effects
associated with the presence of inductances in tho trans­
former circuits.
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8. Optics
8.1. If wo i nj.roduce the notation l = l, -1-- /2 ill the
Jells Iormulu

111
T; -+- T; == /i-

and perform si m ple mani pulntions, \ve get

f~

l == (/1- F) •

To determine the minimum of 1, we nullify the derivative

dl 2f1 (/1- F)- f~

dtl:-:= {It - F)2

whence t, = 2F.
8.2. The lens formula that allows for the parameters
of the lens is

_1 -t- _1 === (n _ 1) (_1_----..1 ) == .L
/1 12 R 2 R 1 F

(8.2.1)

(the sign of the radius of curvature is determined by the
direction from the surface and to the center of curvature).
The ratio of the principal focal lengths is

(8.2.2)

where wo have allowed for the fact that the radii of cur­
vat.uro of hol.h lenses arc the same, Formula (8.2.1)
can he trfl nsforrned thus:

12 = f:~F ·
On the curve representing the /2 VS. /1 dependence, the
value of F is determined by the position of the vertical
asymptote of each curve. However, a more exact value
can he obtained by drawing a straight line that passes
through the origin at an angle of 45° to the axes. In this
ease tho coordinates of the points of intersection of this
straight. line with the curves yield /2 = /1 = 2F for both
lenses, while the ratios of these coordinates determine,
via formula (8.2.2), the ratio of nb - 1 to n a - 1.
8.3. The smaller the aperture, the lower the optical
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distortions caused by the large width of the heam of light
incident 011 the Ieuses of the objective. If the aportur« is
very smull , the optical proporl.io« of the r aruoru closely I'C'­

scmhlo those of a pinhole cumera , whose aperture, ill l.CI'JfLS

of geometrical optics, can be as small as desired and

I
I
I
I
I
I
I I
I I
I 1/

-//i--- b
--f-t- - - - -- - -- _._-
// I I

Fig. 8.2

whose depth of focus extends from zero to infinity.
Actually, however, diffraction imposes certain restric­
tions on this ideal case. The limiting value of the diam­
eter of the aperture, D, is determined by the wavelength
of the light and by the distance from the aperture to the
photographic plate. Theoretical considerations suggest
that D must be close to the value for which only one
Fresnel zone fits into the aperture:*

D~4-VAf·

For instance, at A ~ 0.5 !-tID and t ~ 5 em, the diameter
of the aperture is approximately 0.6 mm. Note that in
photography the size of the aperture is characterized by a
quantity known as the aperture ratio, or the ratio of the
diameter of the aperture to the focal length. Usually the
aperture ratio is marked by a fraction whose numerator
is unity (1/4.5, 1/5.6, 1/8, 1/11). I n the example we are
discussing here the aperture ratio is equal to 1/80. In
cameras the srnallest aperture ratio is practically never
less than 1/16, so that di ffraction effects play no role in
the present problem and need not be taken into account.

* According to Rayleigh, the sharpest focus in a pinhole camera
is achieved when the radius of the aperture is 0.95 of the
radius of the zeroth Fresnel zone.
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8.4. The solution can be found from simple trigonomet­
ric reasoning under common assumptions and approxirna­
tions:

sin a l ~ tan a l ~ a l , sin a 2 ~ tan ct 2 ~ a 2 ,

a]/a 2 ~ n, yllal ~ aI' Y21a2 ~ (1.,2'

Whence,
Y2 a2

Yl aln

8.5. A ray that enters the rod at an angle (1." travels in
the glass after being refracted at an angle ~ given by
Snell's law:

sin ~ = n-l sin C(,. (8.5.1)

The ray falls on the lateral face of the rod at an angle that
is not smaller than the critical angle. From the figure
accompanying the problem it follows that this angle is
n/2 - ~. According to the critical angle condition,

sin (n/2 - ~) = cos ~ ~ n:", (8.5.2)

The maximal value of ~ at a :=: 'Jt/2, according to (8.5.1),
obeys the condition

sin ~ = 1/n. (8.5.3)

288

Squaring (8.5.2) and (8.5.:1) and adding the squares, we
get

whence

n~-V2.

The phenomenon of light "trapping" in a glass rod is widely used
in fiber optics. If the attenuation of light in the glass is low, the
ray can travel over great distances. Bundles of such rods (or fibers)
form cables over which data can be transmitted with a high accuracy
and a low level of noise. Internal organs of human beings can be
illuminated with the light transmitted by such fibers, which at
present is widely used in medical practice for diagnostic purposes.

8.6. The figure accompanying the problem shows that
after reflection frOID the first mirror the beam changes its
direction by an angle of 2a, while after reflection from the
second mirror the beam changes its direction by an addi-
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tional angle of 2~. For the refracted beam to travel in the
direction opposite to the direction of the incident beam,
the surn 2a + 2r3 JHusL be equal to 'It, or a + ~ = n12.

( b)

Fig. 8.6

( c)

In this case the angle between the normals to the mirrors
is

o ~-~ rt - (a + ~) == n/2.

The angle between the mirrors IUUSt also be equal to
n/2.

If instead of the two mirrors we take a prism (see Fig­
ure (a) accompanying the answer), then a beam incident
Oil the base of the prism at an angle a will enter t he prism
at an angle ~ determined by Snell's law. For the refract­
ed beam to leave the prism in the direction opposite to
the one of the incident beam after undergoing total inter­
nal reflection Irorn the lateral surfaces of the prism, the
beam must fallon the base of the prism (after it has been
reflected by the second lateral surface) at an angle ~.

Figure (a) accompanying the answer shows that the beam
travels the same path as in the case of two mirrors, where­
by the angle at the apex of the prism must be equal to
n/2. We see that a prism may also be used to reverse a
beam. For the beam to retain its energy after traveling
through the prisrn practically for all angles of incidence, the
lateral surfaces of the prism must be metalized. If three
Oat mirrors are positioned at right angles, as shown in Fig­
ure (b) accompanying the answer, it can be demonstrat­
ed that the beam of light may be oriented with respect
to the first mirror (on which it is incident) in an arbitrary
manner and yet the refracted beam will always be paral­
lel to the incident one. Instead of three mirrors we can
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use a glass tetrahedron wit.h (l right trihedral angle at the
apex an d identical metalizr«l ]aternl surfaces in tho form
of right isosceles tri anglos (see :Figuro (e) acco rupauyiug
t.he auswor). AboHIH iucidt'llf. Ull the base or till' tct.raho­
droll is reflected hy the mcl.alized surfaces and leaves the
tetrahedron through the base ill the direction opposite
but parallel to the one of the incident beam. An optical
device of this type is known as a corner reflector.
8.7. The intensity of i lluminatio n of a surface that is r
distant from the source and forms an angle ex wi t.h the in­
ci dont ray is

E1 I .
= -2 SIn a,

r
(8.7.1)

where I is the intensity of the source. At the edge of the
table, according to (8.7.1),

Ih
E == (R2 -t-h2)3/2 •

To find the maximum of E we must uul lify the rlori vat.ive:

dE (H2 -f-h2)3j2- 3h2 (R2 +h2)l /2
dh =-~ I (11 2 -1_ h2) 3 --::: 0,

whence

h= R/V2.
8.8. The ratio of the sines of tho angles is equal to the
ratio of the speeds of light in the media:

sin ai/sin (X2 = C1/C2 •

The ratio of the wa velengths is equal to the ratio of tho
speeds of light:

rrherefore

A =: sin Cl2 tv
2 sin a1 1·

8.9. The' 'optical path difference, which determines the
interference pattern, is I Z2 - Zl I IA. Since I Z2 - Zl f

cannot he greaLer than a, the maxi mal possible number of
fringes on each side from the middle of the screen (i .e.
for Z2 > Zj and for Z2 < Zl) is equal to the ratio alt. while
the total number of fringes is 2a/A. Aetually the number
of fringes that can be observed is considerably lower,
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tl ~ 21 CO,~ (8/2).

The source and j ts virtunl
images lie at the vert.ices
of all isosceles triangle. The
dist.ance between the vir­
tual i mages is

a == 2d si 11 (8/2),
or' a ~ 2l sill O.

since at z:2 -Zt :-::= a the intorferr-nce fringes must l i o ill t.he
plane in which the sourcos lie.
8.tO. As the source of light is positioned svuuuct ricul­
ly ill rr-lal.ion t.o t.h« mirrors, it.~ ViTI nul images nppear at
equal distances d Irorn the
source and, as the figure
nccompan yi ug tho answer
shows,

The first interference Iri uges 011 a sc.reon thnL is L rl ist.ant
front the mirrors are separated by a distnnce of

h := "AJ.Jla,

and, hence, the smal ler the value of 8, the greater the eli s­
tauco h.
8.11. Since equal phase differences correspond to equal
optical path di Ilerences, we can write

(Z2 --- Zl )/I'v :.-'.-.: const., or Z2 - Zl -== ns,

where n is an integer. A surface whose poi n ls possess the
properly that the d i fference in the distances lrorn any
poi 111. to two fixed points (the foci) is a constant, const.i­
tut es a hyperboloid. The section of this hyperboloid by
any plane containing these sources results in t\VO branches
of a hyperbola. The sections of the hyperboloid by planes
that are perpendicular to the straight li ne which passes
t.hrough the middle of the segment connecting the sources
are also branches of hyperbolas. For this reasou , tho
observed interference fringes have the form of hyperbolas.
8.12. When light is reflected from the upper boundary
of each Iilm , the phase of the wave changes to the opposite
Of, as it is usually said, a half-wave is lost. 'rho light that
pusses through the Irlm is reflected by the substrate, which
in one ease has a refractive index greater than thaL of tho
Iilru and i n the other, sm aller than that of the fl1111. When
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( C)

Fig. 8.14

n 2 > n, a now change ill the phase of the reflected wave
to t.he opposite one OCCUI"S, whi le when 111 < 11, the phase
of the reflected wa ve is rt-l.ai uorl. For this reason, the
places 011 oue fil m where lig'ht is observed correspond to
tho dark places OJl the other 111u1, UJHl vice versa.

8.13. The (IiIicrenr.c
hetween ueighhori Ilg i n­
terfercnce Ir! ng'es in air
is determi ned by the
relnt ionshi p

ao === Ao/2 tan (1"

whi le for a liquid this
rcl ationshi p is

a == 'A/2 tan a.

(u) 2 Since A == Ao/n, we can

'"<:--~f~7J h!lth
t

write a =-== ao/n.
<, or 8.14. In torIercnce is

__..:::::::l......_ --- - hi caused hy the di Ilerence
(b) in paths or the light rays

l hal Iorms ill the space
Let-ween the lens and the
Cy1in del'. The in terference
Iri nges constitute bands
of equal width.

J.JuL us inl.rod uce n sys­
tem of coord ina tes. ()IIP

ax is, the x axis, is direct­
ed along the generator
of the cylinder that

passes through the poi nt at which the lens touches the
cylinder, while the second axis, the y axis, is at right.
angles to tho generator discussed above (see .Figure (a)
accompanying tho answer). We draw a plane that is
perpendicular to the x axis and passes at a distance y
from the origin. Figure (1)) shows the section of the lens
hy I he plano (curve I) and the section of the cyli nrler by
the plane (curve 2). Tho same ngu.·e demonstrates the
section of the lens by a plane that IS perpondiculur to the
x axis and intersects the lens along its diameter (dashed
curve 3). From Figure (b) it also follows that the gap he­
tween the lens and the cylinder is

h .:':»: h _ _._~ _ L .. _x 2 +y2 y2
1 h 2 ._- '21l

1
'2 H'}. .- '2n1 - '2Jl

2
•
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Here, fl,'"' usual, we assume the following npproxirnations
to be valid:

After carrying out. the appropriuto Lranslormat.ions we
get.

;r~ !J'J (1 1)
2R

1h
-f-- 2h If; h_ R',!, -~~ 1, (8.14.1)

If we int.roduco the not.at.ion a'!. '-:;:: ~111h and h'!.
2hR1R2!(R '2 - Il]}, then (8.14.1) assumes the Iorm

x2 y2
---L--1a2 I h2 - •

Tho interference fri ngos have the shape of ellipses (sec
Figure (e) accompanying the answer) in which h is a pH­
rameter. In reflected light, h == (2k -1- 1)/A (wi th Ic ,=-­

0, 1, 2, 3, ...) for bright bands and h ="= kA fOI' dark.
8.15. The section of the cylinder segment hy a pluue
parallel to the plane of the drawing is everywhere t he
saute. For this reason, all points that have tho same path
difference for the ray reflected from the lower surface of
the cylinder and the ray reflected from the upper surface
of the plate lie at the same distance from the cylinder«
generator that touches the plate, with the result that the
interference fringes are in the form of straight Ii nos
parallel to the generator. The method of rlelermining t.he
distances between the sequential fringes closely resembles
the method of determining the radii of Newton rings. The
distances from the generator that touches the plate satisfy
the same conditions as the radii of Newton rings do,
namely,

h~·v·rRA~
:l

for bright bands in reflected light. and dark hands in
transm it led ligh l, all rl

h:=:- VR'Ak

for dark bands in reflected light and bright bands in
t.rausruit.t.ed light. As we move away frorn the general-of,
the distances hetween neigh boring hands become SIn aller ,
just as the radii of Newton rings do.
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k-1 k

I~ig. 8.16

8.1H. 'lIu: widi.h of l.hp nil' gap bet wr-en the lens and l.he
p lni o is tho sum or the thickness of the Jells section and
the particle thickness:

I r 2

h .-- hu '-1- a z:': 2R -1- a,

where r: is the radius of the r i ug heiug' observed. ,\ bright
ri ng whose uum her i s l: is observed at

~k-I·-1 ')..,
h~-2-2·

Thus,
') 2k -1- t "l[J ')}.Jr .... ,~ --2- A l - o-J l a ~

I f the numbers of sequel) t i al ri ngs are )aid 0 ff on the
hori zonlal axis and the square of the radii of the COJTC­

spondi ng rings, on the vort.ical axis, we obtain a straight
line (sec the ligure accompanying
tho answer) whose slope is equal
t.o the ratio of the di Ilercncc of
squares of radii of two neighbor­
ing rings to t.ho product 'AR,
that is, (r: - rli_1)/All. I( nowi ng
R, we can find A. Note that
in this method there is no differ­
ence between bright and dark

rings, alld knowing the CX<1et number of a ring is not
necessary. F10r this reason, in the figure accompanying
the answer we have assigned a num ber k to an arbi trary
ring, while the numbers k - 1. and k + 1 are assigned to
the neighboring rings.
8 .:17. To construct the interference fringes, we draw
a It um her of straight Ii IH\S parallel to I.he plate in such
a wa y l.haL the dist.auces between thorn along t.lie vertical
Ii ne are equal to one-half of the wavelength. Tho points
at which these sl raight lines i ntersect the substrate (in­
cluding the surface of tho ledge) determine the position
of the i nterference fringes of equal width. Analyzing the
position of the fringes oht.aiucrl here, one ran establish
t.hut Irom 'he wider side of the \vedge (ill l he f'Jglll-P ac.C0111­

pallying t.he prohlern , OIl the right) the distance between
the fringes, or bauds, is smal ler (for any value of 8)
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(a)

Fig. 8.17

than over the f!at sections of the substrato. Tho rlistance
between the Iringes fr?nl the narrow side of the wedge
(~n the left) call he either smallor OJ' greater than the
distance over the nat sections depending on the relation-
ship between 8 and a. For .
e> a (see Figure (a) ac- ~

. h ~ 0/

13
companyi ng t e answer), ~ D

f) == a + ~.

The left side of the ledge
acts as a substrate and
forms an angle ~ wi th the
plate, that is, a wedge. If
8 > 2a, then p> eX and
the distance between the
fringes is smaller than that
between the fringes over
the flafsection of the plate. /~_~;/" /'
This case is depicted ill //' j)

Figure (b) and corresponds
to the case depicted in the
figure accornpanying the
problem. But if 8 < 2a, we have f) < a. and. the fringes above
the left side of the wedge are separated by a distance
greater than that separating the fringes over the flat
section of the plate. For e< a (sec Figure (c) accompa­
nying the answer), the left side of the wedge also acts
as a substrate and forms a wedge with an angle ~ < a
with the plate. In this case, too, the distance between
the fringes is greater than that between the fringes over
the flat section of the plate.
8.18. The interference fringes in the wedge constitute
bands of equal width. Ledges dirni ni sh, while dents in­
crease the width of the air gap where the path difference
of rays is formed. For this reason, at the points of a ledge
the path di fferellce is the same as at the points of the
wedge closer to the narrow part of the gap, while at the
points of a dent the di fference is the same as at points
closer to the wide part of the gap. For this reason, the
interference pattern depicted in Figure (b) accompanying
the problem corresponds to a ledge, whi le that depicted
in Figure (c) corresponds to a dent.
8.19~ Tho intensity of i l luminat.ion at the center of the
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second screen is determined by the number of Fresnel
zones into which the section of the wave surface Iiinited
by the hole in the first screen can be partitioned. If this
number is not large and is even, the light is practically
absent from the center, while if the number is odd, light
is observed at the center. If a is the diameter of the hole,
Iv is the wavelength of the incident light, and z is the
distance between the screens, the number of Fresnel
zones is determined by tho ex pression

k === a2/4'Az.

As the distance between t.he screens is increased, the
number of zones assumes alternately odd and even values,
and this is accompanied by an increase or a decrease
in the illumination at the center of the di ffraction pattern.
Since the number of zones continuously decreases as z
gets larger and larger, the limit distance is the ODe at
which k becomes equal to unity, that is,

z == a2/4/...

At a distance greater than this value, t he intensity decreases
monotonically, and for z » a2/4A the intensity changes
in inverse proportion to Z2, that is, just like for a point
source.
8.20. When the central Fresnel zone and several neigh­
boring zones are screened, the light intensity at the center
of the geometric shadow is exactly the same as if one-half
of the first nonsc.reened zones was acti ng. 'The calculation
is carried out in the same manner as when there is no
obstacle, the only difference being that the calculut.ion
of the overall action of the Fresnel zones starts not from
the zeroth (or central) zone but from the first nonscreened
zone. Therefore, a bright spot is always observed at the
center of the screen irrespective of the dist.a nee to the
obstacle or of the wavelength of the light wave (the only
requirement is that the number of zones screened by the
obstacle be moderul.e].

A theoretical description of the formation of a bright spot at
the center of the geometric shadow was first carried out by Poisson,
who used it as an objection against the wave theory of light, since
he assumed that such a spot could simply not exist. But an experi­
ment carried out by Arago proved without doubt that such a spot
does indeed exist. Actually, this spot was discovered roughly a
hundred years earlier by Maraldi. Curiously enough, the spot was
later named the Poisson spot.
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8.21. The maximum condition in the spectrum of a
di ffraction grating is

C sin fP == kA.

Longer wavelengths correspond to larger angles. The
figure accompanying the question shows that the position
of the second-order maxi mum of the line A2 is close to
that of the third-order maximum of the line AI' Therefore,
c sin (fJ :.;.-::: 2A2 ~ A3 • Whence, A2/AJ. ~ 1.5.
8.22. The condit.ion for a first-order diffraction maxi­
Inurn to occur i s

c sin (f)1 == A.

For the highest-order maximum we have c sin (Pn} .:....:; kInA,
whence

k :::..:; sin q)m
m sin «>1 •

Since the value of sin (Pnl cannot exceed unity,

(8.22.'1)

If k m contains both an integral part and a fractional
part, the latter must he discarded irrespective of its
value. For instance, if in the first order the line is observed
at an angle of 8.36°, formula (8.22.1) yields k m ~ 6.88.
The maximal order, therefore, is kIn == 6.
8.23. The angles that determine the position of the
first maximum for both gratings are the same, which means
that the gratings spacings are the same. To estimate the
resolving power, we must find the ratio of the wavelength
at the maximum of a line to the di fference between this
wavelength and the wavelength corresponding to a neigh­
boring minimum. For small angles the sine function may
be replaced with the angles, so that

The resol vi Jlg power,

~ == J., ,
A.m ax - Arn l n

is equal approximately to 25 for grating 1 and 10 for
grating 2.

297



8.24. Tho resol vi JIg power of H gTalulg is

o -== Ie/V, (R.24.1)

where N is the general number of lines (or grooves), and
Ie is the order of the spectrum. The maximal resolving
power is determined by the maximum possible order of
t.ho spectrum:

k Jll H X :::.:=: clt«.

Substituting (8.24.2) into (H.24.1) yields

fJ == eIVIA.

(8.24.2)

(8.24.3)

Since the product eN is the same Ior both grutl ngs and the
observed spectral lines arc tho surnc, the resolvi ng PO\VCl'

of the t\VO gratings must also be the same. A small differ­
ence in resolving powers determined via (8.24.3) can he
caused by the fact that the exact form of (8.24.2) must be

k1ua x :::;; cll«; (~.24.4)

whence
6Ill a x ~ cNIA. (8.24.5)

Since oul y the integral parts are taken in (8.:24.4) and
(8.24.5), tho values of <Smax of the two gratings may differ
somewhat.

I
~---_.-

4{lj 1

Fig. 8.25

8.25. The path di Ilercnco between the rays from two
neighboring slits is detcrrnined, as illustrated by the
figure accompanying the answer, for direction 1 by the
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rli Ilerenco between the segments All and G'l.J 1 a nd for
direction 2, by tho difference between All and Cl)2_
Accordingly, the path di Ilercncos for directions 1 and 2
are

81 ::.=: d (si n 0 - sin (PI) and 62 ..:.=: d (sin Q)2 - sin 0),

or

() . .)d c · ( 0-1- tt J
1 ) . • (U-- (IlJ )1 -- -.j cos --2- SIn --2- ,

6~ "', za cos ( IH; tp2 ) sin ( qJ\;- () ) .

Thus, t he <Ii f)'rac.t!on rnuximurn coud itions can he wri t.ten
thus:

( or <p )"2deos 2-1 sin

(
(11 -1-·(1 )

2d cos ~ Sill

(
0 -0. q)l) k~
--2- =-= ~A,

(
<P2 ..- 0 ) = J A

2 I~/...

IIJ the lirst. approx imutiou we can assume that. () -1- q)l ~

(r2 .-+- 8 ~ 20. Hence.

d cos 0 X (8 - (PI) ~ kA, d cos e X (<V2 - 0) ~ k'A.
(8.25.1 )

This Iorm ulas have the same form as for the case of normal
incidence of light OIl a grat.i rag wi th spacing d cos 8.

The maximum order of the spectrum in which the wave­
length 'A is observed is

k == d cos 8/'A,

while the longest wavelength (k = 1) is

A == d cos 8.

The d isporsivc power can he convonient.ly expressed ill
terms of the angle wi Lh respect to the direction of the
zeroth mux imum , 0 _.- <PI and fP2 - o. If hy '¢ we denote
these differences, which are close in absolute value, we
find that

d,p k
d"A ~ rl cos ecos '\l~

At angles eclose to 90°, the dispersive power of the grating
may be considerably h igher than for normal incidence of
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light 011 the grating. However, the ruax imum dispersive
power is 1/A f,OS 'p, just as for normal incidence.
8.26. If we assume that the diffracted rays are reflected
in the plane of the grating just like in a mirror (see the
figure accompanying the answer), we arrive at a pattern
similar to the one obtained in the answer to Problem 8.25.

Fig. 8.26

J ust like in the rase of oblique incidence of the rays on
the grat.ing, the dispersive power increases with a coef­
ficieut of (cos 8) -1.

8.27. According to Brewsters Iaw, when light is re­
flected from a dielectric, complete polarization occurs
when the ta ngen L of the anglo of i ucidence is equal to the

refractive index of the medi­
urn reflecting the light. Since
when light propagates in air
and falls on a dielectric the
refractive index is always
greater than unity, we have
tan a > 1, or a > 45°.

Fig. 8.28 8.28. Hofractcd light is po-
larized only partially. Light

that is practically corn pletely polarized can be obtained
if one uses a stack (sec the figure accompanying the answer)
of parallel plates whose surfaces arc oriented at the Brew­
ster angle to the incident light. Light becomes partially
polari zen as it is refracted by the fi rst plate, and as it
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travels from one plate to another, it hecornes more and
lllore polarized 0

8.29. The ratio of the wavclouui.hs is rioturmiucd by the
ratio of the speeds of propagation of the t.\VO wa yes:

Ae/Ao ~ c.lc.;
At the same time,

CeC0 == sin Be ~ i n f1 0 0

lIenee,
Ae/Ao == sin ~e/sin fJ IH Ar > Aoo

8.30. The figure accompanying the answer shows the
directions of the incident and scattered light and the
planes in which the osci llations of the electric field vector

Fig. 8.30

lie. III the scattered light the oscillations must occur
simul taneously in plane a, which is perpendicular to
direction 1, and ill plane b, which is perpendicular to
direction 2. Thi s, obviously, may happen only if the
oscillations take place in the directions designated by
arrow 3. The blackening of the walls of the pipe, which
was mentioned in the statement of the problem, is nec­
essary so tha t no reflection can occur, since otherwise
various directions of propagation of the light might
become possible.
8.3t. In the direction of the optic axis, the speed of
propagation of the extraordinary and ordinary waves
is the same and therefore the axis is perpendicular to the
plane tangent to both wave surfaces at the point where
the surfaces touch. In the first case (see Figure (a) accom­
panying the problem) the optic axis is parallel to tho
crystal boundary, while in the other (Figure (b)) it is
perpendicular to the houud ary. Since in all d i roct io ns
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except the optic axis the speed of the extraordinary wave
is higher t.han that. of 1.110 ordinary, hy the common no­
moncla t.uro the crystal i~ neguti ve.
8.32. After the light. has passed through the tirst Nicol
prism, it.s intensity becomes J 1 == (1/~) 1 0 (it is assumed
that the extraordinary wave loses no intensity when it
is reflected nIH) when it travels through a Nicol prism).

Accordi ng l.o Malus' Iaw, after the light
has passed through tho second Nicol
prism the intensity hocomos

The figure accompanying the answer
shows the direction of oscillations of
the electromagnetic field vector in tho
electromagnetic wave after the wave has
passed through the first Nicol prism,
E 1 , and after the wave has passed

through the second Nicol prism, E 2 0 In the reverse direc­
tion the electric field vector will be retained after the
reflected wave has passed through the first Nicol prism
hut will change to E 2 cos e after the wave has passed
through the second Nicol prism. Accordingly, the inten­
sity after the light has passed through the t\VO Nicol
prisms in hoth directions will be

1 3 == 12 cos" e = II cos" e == (1/2) 1 0 cos" o.

8.33. The sense of rotation of the polarization plane
depends 011 the direction of propagation of light in relation
to the direction of the external magnetic field. For an
overwhelming majorit.y of substances ("positive" sub­
stances), the rotation is clockwise (looking in the direct.ion
of the ray of light) if the direction of propagation of light
corresponds with that of the external magnetic field, and
counterclockwise if the t\VO directions are opposite. If
the directions of the light ray and the external magnetic
Held coi ncided when the light passed Irom the source to
the mirror and, therefore, the polarization plane rotated
clockwise, after the light is reflected by the mirror tho
direct.ions of the light ray and the external magnetic
field are in opposition and the polarization plane rotates
countercloc.kwise. If one views this process from the
ini rror , the rotation sense coincides with the clockwise
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rotation of t.he pnlari zntion plane when light. pn~~(?~ in
the pri mnry direct.ion. As a rosult , the two rot.at ions are
addl'd and LIH~ H ngle doubles.
8.34. 111 tho Kerr e liect., l.ho difleronco of tile refractive
indicns of the extruordi nury and ordinary waves obeys
the law

\Vh(HOO k is a constant charncterizl ng "hp ..ned i urn. Si nee
the electric Held strength is squared i n (R.3~L 1), (,1tP

difference ne - no does not depend on the direction of
the electric field. The optic axis in nitrobenzene coincides
in direction with the electric field vector. The path differ­
ence between the ordinary and extraordinary rays,

/) = l tn; - no) = kE 2l

(l is the length of the light path in the nitrohenzono), is
also independent of the direction of the electric field
vector, whereby tho optical pattern caused hy the emerg­
i Jlg el li pt.ical polari zaf.ion will not change U1H}{Ho reversal
of direction of electric field.
8.35. According to classical theory, when H source of
electromagnetic waves moves toward the observer, the
ratio of the perceptible frequency to the frequency of
the light emitted by a fixed source is

Vel 1v;-::-= 1-~ ,

with Btho ratio of the speed of the source to the speed of
light. According to the theory of relativity, this frequency
ratio docs not depend on whether the source or the observer
is consi rlered fixed and

"t.r == 1// 1+~
"0 r 1- ~ ·

'I'he \'t.r-[,o-vc'] rnt.io is given by the formula

Vt.r == -V1- ~2.
'Vel

Hence, the upper curve corresponds [,0 clussical-theory
results, while the lower curve corresponds to the theory­
of-relativity results. For ~ ~ 1 the di Ilcrence between
the two formulas is moderate (e.g. at B :== 0.1 the .Ii ffer­
ence nrnounl.s only to 0.5%).
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8.36. The ratio of the ion velocity to the speed of light,
~ =:: vic in the case at hand is of the order of 10-4

• For
such vaiues of p the di Ifereuce between the classical and
relativistic formulas for the Doppler effect is negligible.
If the source moves with a velocity u, the wavelength
of the light measured by the receiver is

A == Ao ± vT = Ao (1 ± pic).

Here Ao is the wavelength of the light emitted by a fixed
source, and the plus sign corresponds to the case where
the source is moving away from the receiver, while the
minus sign corresponds to the case where the source is
moving toward the receiver. The difference in wavelengths
measured from both sides of the tube with the plasma in
which the ions move is

~A == 2Ao (vic),

which yields the following formula for the velocity of the
ions:

~A
v= 2A

o
c.

Since the ions have different velocities, each observed
spectral line is blurred, or broadened. The maximal
intensity corresponds to the most probable velocity,
while the extent to which the line is blurred characterizes
the velocity distribution of the directional motion of
the ions.
8.37. Since the velocities of atoms are much lower than
the speed of light, we can employ the classical formulas
for the Doppler effect. As shown in the answer to Prob­
lem 8.36, the di fference in the wavelengths of the waves
emitted by two identical sources that move with veloc­
ities of the same absolute value but pointing in opposite
directions in relation to the receiver constitutes

~A = 2Ao (vic),

where Ao is the wavelength of the wave emitted by a fixed
source, and c is the speed of light. In a light-emitting gas,
the atoms move with different velocities, in accordance
with the Maxwellian distribution law. The higher the
temperature, the more extended is the distribution in
the direction of higher temperatures, therefore the higher
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the temperature, the broader the spectral line. I-Ieu<:e
curve 2 corresponds to a higher temperature. '
8.38. In accord with the Doppler principle, the distri­
bution in wavelengths of the intensity of the emission
lines of excited ions reflects the velocity distribution of
the ions (and hence the energy distribution of the ions,
too). However, this distribution cannot be associated
with the temperature of the gas. The fact is that the
motion of ions in the discharge plasma (which is the source
of radiation emitted in the tube) is highly anisotropic;
this anisotropy is determined by the electric field strength
in the tube. The electric field in the tube has a radial C.OIIl­

ponent directed from the axis to the wall. On the axis
this component is zero; it increases as we approach the
wall. This field imparts a directional velocity to the ions.
Thus, the left half of the curve in Figure (b) (shorter
wavelengths) corresponds to the ions moving away from
the axis toward the spectrograph, while the right half
corresponds to the ions moving away from the axis in the
opposite direction.
8.39. According to Kirchhoff's law, the ratio of the total
emissivity of a heat radiator to the absorption coefficient
(immissivity) of that same radiator is the same for all
objects, coristi tutes a universal function of the tempera­
ture, and is equal to the total emissivity of a black body:

eT/aT = ET·

Hence, an object with a higher absorption coefficient has
a higher emissivity and, therefore, it loses the energy
acquired during heating at a higher rate. Curve 1 (see
the figure accompanying the problem), therefore, repre­
sents the change of temperature in cooling for the object
with the lower absorption coefficient Of, in other words,
curve 2 represents the cooling off of the object with the
higher absorption coefficient.
8.40. The average kinetic energy of a molecule of the
gas in translational motion is

3
w==T k T ,

where k is the Boltzmann constant. If the concentration
of the molecules in the gas is n, the volume density of the
energy of the molecules is

3
um = 2 nkT.
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The volume density of the energy of blackbody radiation,
according to the St.ofun-Bul tzmann law, is

40
ur == - T4.

c

If we set Urn equal to u.; we get

T = ( 3;:c r/ 3
. (8.40.1)

We will illustrate the above result with two examples.
First, suppose that the concentration of the molecules
is the same as that at S.T.P. conditions (T = 273 K,
p === 101 325 Pa). This concentration (the Loschmidt
number) n is equal to 2.686 X 10 25 m-3

• Substituting into
(8.40.1) the values k = 1.3807 X 10- 23 J/K, c =
2.9979 X 10 8 uil«, and a == 5.670 X 10-8 W·m -2.K -4,

we find that

T == 9.03 X 105 K.

Under these assumptions, the gas pressure is

p = nkT === 3.35 X 108 Pa === 3300 atm.

In the second example, we wish to find the concentra­
tion of the molecules of the gas if the temperature at which
the energy density of the translational motion of tho
molocules is equal to the energy density of electrorn agnetl c.
radiation is to be equal to O°C. Equation (8.40.1) yields

n == 7.42 X 1014 ill -3.

This concentration yields the following value for the
pressure of the gas:

p == 2.8 X 10-6 Pa.

8.41. The emissive power over a definite wavelength
Interval is

A2

AE'l'- \ EATdA.
i. 1

Since the integral is the area under the curve Ii mi ted
by the ordinates corresponding to the lower and upper
values, the emissive power per each interval is the same.
Tho energy of the quanta corresponding to greater wave­
lengths is lower, whereby even for the same emissive

306



power there are more quanta of lower energy (i .e. referri ng
to S 2).
8.42. Contrary to Wicu's displucement law, the maxi­
mum in the blackbody radiation distribution corresponds,
for a higher temperature, to a longer wavelength rather
than to a shorter wavelength.
8.43. The relationship that exists bet\veen the radiation
function and the volume radiation density is

E vT = uvTc/4. :

The radiant emittance over the frequency range from VI

to V 2 is determined by the integral

"2

tiE1, 2 = JE VT dv,
VI

and, hence, tho volume radiation density over the same
range is

8.44. The thermal radiation emitted by a body cannot
exceed the blackbody radiation over all possible wave­
length intervals. Contrary to
this theoretical fact, the ex- G,,-

perimental curve contains a 05

section that lies above the
curve representing blackbody D.3

radiation.
8.45. According to Kirch-
hoff's law, 0.1

e')ja'J,.. = E ').., lL t A2 "A

where E'J,.. and e'A. are the res- Fig. 8.45
pective radiant emittance of
a black body and a given object (which is not a black
body), and a"" is the absorption coefficient of the object.
Therefore, the ratio of the ordinates of curve 2 to those
of curve 1 yields the value of a"" for each wavelength. On
the segment from A = 0 to A! the value of a'A. remains
constant and equal to 0.5. The same happens on the seg­
ment from A,2 to Iv = 00. On the segment from Al to AI
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the value of a-; passes through a minimum, as shown in
the figure accompanying the answer.
8.46. Since

dE E dE dAr cs; == dV' ).,==~, and dV -V2'

we have
dE dA c dE c

Ev=~dV== -V2"K== -V2 E A.

To compare the maximal values of E; and E A' we take
the derivative

dEy==._~ E __c_ dE", =_c_ (2E +~ dE", )
dv v3 x ,,2 dV v3 )., V dA •

At the maximum of E').., the second term is zero while the
first is not. "fhus, at the wavelength Am the frequency

fa i (I-j)

0.3

0.2

O.t

oL....-_..Io....-----I_--""_.........I-_...a.-_

2.0 2.2 2.4 2.6 2.8 .10 0(

Fig. R.46

does not correspond to the one at which E; is maximal.
The maximum occurs at dE AidA negative, that is, in the
section where E", is falling off.

To find the frequency "m at which E; has its maximum,
we must take the derivative of the Planck function with
respect to v, or

dEv == 21th { 3\1
2 [exp (-F) -1J-*exp (~) }

dv ell [exp ( Z; )-1r ·
Nullifying this derivative, we arrive at a transcendental
equation for hv/kT:

ehv/kT ( 3 - Z; )= 3.
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'This equation can be sol ved graphic-ally hy constructing
two functions,

Yl ::::::: e-hv/kT and Y2 = 1 - hv/3kT.

An approximate determination (via the intersection point
of the two curves) yields a value of 2.82 for hvm/kT.
A more exact calculation yields

hv1n/k1' ::::::: 2.8214,
or

hVm ~ 3.896 X 10-23 T. (8.46.1)

From (8.46.1) it follows that Wiens displacement law
can be written in the form

V n1 ::::::: 5.879 X 1010 1'.

The frequency V m corresponds to the wavelength (we de­
note it by 'A (vrn) )

'A (vrn) = 5.10 X 10-2 t-v.
Thus,

8.47. The volume density of the energy of blackbody
radiation over the frequency range from v to v + dv
is determined from the Planck formula

81lhv 3 1
du ==--3- h dv,

C exp ( k~ ) -1

The energy of each quantum in this range is hv, Thus, the
distribution function for the number of quanta over the
energy of one quantum has the form

dn
dhv

8n (hV)2 1
c2h3 exp [hv/(kT)J -1 · (8.47.1)

Introducing the dimensionless parameter ex::::::: hvlk'I',
we can represent (8.47.1) in the form

(8.47.2)
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(8.47.3)

The total "couceut.rat.iou" of the quanta can be obtained
by in tegrut.i ng (8.47.2) wi t.h respect to a front zero to
i nfini ty, and the result is

00

n == 8:rrk3 T3 r a 2 da
cSh3 J erx - 1 ·

o

The integral in (8.47.3) can be reduced to tabulated func­
tions (it can also be evaluated by expanding it in a power
series). The value of the integral is 2.404, with the result
that

n= 8X2c':~34:nk3 T3= 2.028 X 107 T3.

In relative units of (1In) dn/da, the energy distribution
function for the quanta is presented in Figure (a).

1 dn
n' (fi

02

01

(a)

1.0 1.1 Ut te U

( b)

Fig. 8.47

2.0 0{

Since the total energy density of blackbody radiation
energy is

U ~.:-- ~ 114
::= 7.57 Y 1U-16 .1'4c '

(0 is the constant in the Stefan-Boltzmann law), knowing
the total number of quanta (see formula (8.47.3)) we can
determine tho average energy of Cl single quantum:

hv --~. X 1Q-3T --- 3 73' -, 10-23T "._- 2 70kTa v - 2J)28 -.' . ---. •

The distribution function given by (8.47.2) enables finding
the energy of the "most pro hahlo' quau tum , that is, the
quail l.um whoso energy corresponds La the mux irnum in
the distribution Iunct.iou. To this end one must nullify
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the derivative rlnalda. This leads to the lranscendental
equation

(2 - a) eel = 2.

An approximate graphical solution (Figure (b)) yields
'h = 1.6. A more exact value is ex = 1.594. Hence,

hvp = 1.594kT.

In the answer to Problem 8.46 it was shown that the
Pllerg-y of the quantum corresponding- to the maxi 'Hum
of t.ho function J~\'T is hV.1l === 2.~21.4kT. Wiens displace­
mont Iaw rail thou be used to determine the energy of the
qunul.um corresponding to the maximum of the function:

Note that the average kinetic energy per one degree of
freedom of an ideal gas is w = O.5kT.
8.48. At first glance it appears that the question is
rneaningless. Just think, how can one heat something
that does not exist? Actually, however, space is always
Ill led with electromagnetic radiation, whose energy is
determ i ned by the Stefan-Boltzrnann law:

40"u:-:=: -- T4.
C

(8.48.1 )

If we imagine a region in space bounded by a shell that
radiation cannot penetrate either frorn the outside or
from within (and inside the shell a perfect vacuum is
maintained), then the electromagnet.ic radiation inside
the shell must be in thermodynamic oqui lihrium with
the shell. To raise the temperature of the shell. we must
supply an amount of heat determined not only by the
heat capaci ty of the shell but also by the necessary in­
crease in tho density of energy of the electromagnetic
radi at ion inside the shell. If we define the volume specific
heat capacity as

1 dQ du
cvol ==Y dT == M

and use formula (::t1:8.1) l.o find the derivative. we get

16(J T3
cvol =:;: -c- ·
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8.49. If the intensity of the light is I, the number of
photons of rnnnochromatic light incident every second
on a surface of unit area is

N == Ilh»,

The momentum of each photon is hvlc. When hitting the
surface, a photon transfers a momentum hvlc to the surface
if it is totally absorbed or a momentum 2hv/c if it is
totally reflected. The pressure exerted on the surface is
equal to the sum of all momenta transferred to the surface .
per unit time. In the case of absorption,

I hv I
P==/VVc==c'

while in the case of reflection,

p zzz: 2.!- .!!:!- = 2 .!- .
hv c c

I
P ~ - (1 -t- R).

c

I
I

Fig. 8.50

This formula coincides with (8.49.1)~

which was obtained on the basis
of the electromagnetic theory of
light.
8.50. Let us assume that such
radiation has been obtai ned and
is directed onto a mirror that is a
paraboloid of revol ulio n , with the
rays of light hoi ng strictly parallel

to the axis of the paraboloid (see the figure accompanying
the answer). Since planes that are perpendicular to the
rays are wave surfaces, all points in a single plane are
in the same phase of oscillation (irrespective of the nature
of the oscillation). All rays parallel to the axis converge
(after being reflected) at a geometric point that is the
focus of the paraboloid. The geometrical properties of
a parabola imply that the sum of distances from any
point in a plane that is perpendicular to the axis to the

If a fraction of the photons are ahsorbcd and the rest are
reflected, the latter process bei JIg characteri zed by a

reflecti on coefficient R, then the
pressure exerted by the light on
the surface is
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parabola and from the parabola to the focus is a constant.
This means that the oscillations that arrive at the focus
from all points in a wave surface are in phase. Hence, all
radiation that travels to the paraboloid will be concen­
trated at a si ngle point and the volume energy density
of the radiation will become infinite at that point. This
would Inake it possible to obtain (theoretically) infinite
local temperatures at a finite temperature of the radiation
source that provides the flow of plane waves.

The picture can be reversed, that is, we may ask our­
selves: what requirements must a source meet for it to
produce a stream of plane waves? 'faking into account
the reversibility of light rays, we conclude that such
a source must be concentrated at a geometric point. At
present quantum electronics can produce radiation wi th
extremely low angular divergence, something on the
order of 10-2 or even 10-3 of one second of the arc and,
respectively, with colossal local power outputs. But even
in this case the rays in such radiation cannot be con­
sidered strictly parallel.
8.5t. The photon energy transferred to an electron in the
metal is used to overcome the potential barrier at the
boundary of the metal (the work function P) and part
of it is lost inside the metal. In addition, one must bear
in mind that not only the electrons that occupy levels
lying near the Fermi level participate in the photoeffect.
In adrli tion to these, there are electrons that move some­
what slower and, hence, require for their liberation ener­
gies greater than the external work function. Therefore,
Einstein's equation can be writ.ten in the form

ltv == .L4 -t- P + W,

where A is the terrn characteri z.ing the energy losses
inside t he metal and the additional energy necessary for
the eler t.rons lying below the Fermi level to become
liberated. The photoelectrons that escape from the surface
of the metal have the maximal energy (A == 0); the initial
energy of such electrons corresponds to the Ferrni level:

Wm = h» - P.

8.52. According to Einstein's equation,

hv ::%:: P + mv:n/2,
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where Urn is the maximal energy of the photoelectrons,
and P is the work function of electrons ejected by the
cathode. To stop the photoelectron current, we must
apply a stopping potential no smaller than Us t op , which
is determined from the equation

muc:n/2 == eUs t op ,

where e is the electron charge. Thus,

hv == P + e[!stop.

For a known value of e, the slope of the straight ]j nos,
d Us top/dv ~ hie, deterrnl nes the Planck constant.. The
straight lines are d i fferent because they correspond to
cathodes with different work functions. The work function
can he determined either hy the point of intersection of
a straight line (for a particular cathode) with the hori­
zontal axis,

P = hv o

(with V o the photoelectric threshold), or by the point of
intersection of tho straight line with the vertical ax is,

P == -eUf'10PO'

8.53. According to the hypothesis, the illuminated elec­
trode emits photoelectrons whose maximal energy is '

W m == he/A - P,

which makes it possible to think of the system as an emf
source, with the maximal value of the emf being

1£ == Wn/e. (8.53.1)

This source can geuerate a current in the circuit: the cur­
rent is determined by the intensity of i llumi nation of the
electrode but cannot exceed a value of

1m == c/.R.

At the same time, the current cannot exceed tho value

I :=-..:. Ne,

where N is the number of electrons ejected by the cathode
per unit t.ime duo to Hlum inatiou of the cathode with
light. Since according to (H.f)3.1) the emf is constant and
so is the value of R, the interelectrode gap may be con­
sidered as a resistance r v ac whose value is the smaller
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the greater the intensity of the light. In darkness this
resistance is infinite. Bearing all this in mind, we can
write

8.54. The stopping potential difference, that is the vol­
tage at which the photocurrent ceases, is the same for
both cases. This potential difference determines the
maxi mal photoelectron energy and equals the di fference
between the photon energy and the work function; hence,
the emi ssiori frequency for the two sources is the same,
and the sources differ only in the intensity of the radi­
ation they emit.
8.55. According to Einstein's formula, the work func­
tion is equal to the di fference between the phot.on energy
and the maximal kinetic energy of the photoelectrons:

P = hv - mvirJ2.

The higher the maximal energy of the photoelectrons,
which energy is equal to the maximal stopping potential,
the lower the work function. In the case at hand, the
cathode whose current-voltage characteristic is repre­
sented by curve 2 has a higher work function.
8.56. The point that an electron can reach thanks to
their initial kinetie energy is determined only by the
value of t.he stopping potential di fference. Irrespective
of the distance between the electrodes, tho point is always
at the nridd le of the interelectrode gap, and only such
a distance can the fastest electrons leaving the cathode
cover.
8.57. In Com pton scattering, the photon wavelength
changes by

h
~A~-(1-cosO).

meC

We see that in the case of angle O2 the wavelength increases
by a larger quantity. Hence, hV2 < hv 1• As a result of
scattering, the photon transfers n fraction of its energy
to the electron, and t.he energy t hat the electron receives
is the greater, the smaller the energy of the photon after
scattering, and hence the greater the value of e is.
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9. Atomic and Nuclear Physics

9.1. The protons move toward each other until their
relative velocity becomes equal to zero. When the velocity
is zero, the incident proton slows down and the immobile
proton begins to accelerate, so that the distance between
the two protons starts to increase. According to momentum
conservation, when this happens, mvo becomes equal to
2mv, where v is the velocity of both protons at the moment
when the distance between the protons is minimal. At
this moment both the velocities and, hence, the kinetic
energies of the two protons are the same. The difference
between the i niti a1 kinetic energy of the incident proton
and the total kinetic energies of the two protons is equal
to the energy associated with the interaction between the
protons:

mv~ _ 2 m (vO/2)2 e2

2 2 4neor '

whence
e2

r==--­
:rteomv~ .

9.2. Assuming that ionization occurs as a result of a
completely inelastic collision, we can write

mu., ::= (m + mH) U,

where m is the mass of the incident particle, mH the mass
of a hydrogen atom, Vo the initial velocity of the incident
particle, and u. the final common velocity of the particle
after collision. Prior to c.ollision, the kinetic energy or
the incident particle was

W o == mv~/2.

The total kinetic energy after collision is

W == (m+mH) u2 == m2v2

2 2 (m+mH)

The decrease in kinetic energy must be equal to the ion­
ization energy:

Wo-W=W;= m~~H WOo

The greater the mass of the incident particle, the smaller
the fraction of the initial kinetic energy that cau be used
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Ior ionization. When an electron is used as the ionization
agent, the initial kinetic energy of the electron is almost
completely used for ionization. When an accelerated ion
of hydrogen is used for ionization, the initial kinetic
energy must double that of the electron, and when ion­
ization is initiated by a helium atom, the energy must he
five times that of the electron. This estimate explains
why in a gas-discharge plasma, ionization is initiated
almost exclusively by electrons, while ionization by the
proper ions plays practically no role.
9.3. The kinetic energy of the electron in a hydrogen­
like atom is

while the potential energy is

As n grows (i.e. as the electron moves to higher levels),
Wk 1n decreases in inverse proportion to n2

, while Wp o t
grows, tending to the maximal value of Wp o t = 0 as
n ~ 00. The total energy,

w m_e4_Z_2 _

- 8e~n2h2'

also tends to zero as n ~ 00. The minimal value of the
total energy is

me4Z2

W min == - Bsgh2 •

Obviously, to detach the electron from the atom, the
following work must be performed:

(
me4Z2 ) me4Z2

A == W max - W min == 0 - - 8egh2 == 8e5h2 •

The ratio of this quantity to the elementary charge e is
known as the ionization potential. This is the minimal
potential difference that a particle of infinitely small
mass and carrying the elementary charge (practically an
electron) must pass for the given atom to become ionized.
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9.4. The wave number of the emission lines of a hydro­
gen-like atom (when an electron "travels" from one
quantum level to another) is given by the formula

~ (1 1)'V~RZ2 ---k2 n2 ,

where R is the Rydberg constant. For a nucleus of infinite
mass,

me 4

Roo == 88~h2C •

For a nucleus that has a tinite mass lVI we must substitute
the reduced IJlaSS

m
Jt== 1+m/M

for the electron mass In. Assuming that the electron energy
is zero at infinity, we arrive at the following formula for
the energy level with the principal quantum number n:

W R ch 1
n~- oonF1+m/M.

This formula shows that the greater the mass of the nucle­
us, the deeper are the levels of the nucleus and the greater
the separation of the levels and the higher the frequency
of the spectral line reflecting the transition between levels
with the same initial quantum numbers and the same
final quantum numbers. Of course, since m ~ M, the
difference between the corresponding values is small,
but for hydrogen and deuterium it is sufficiently high.
The aforesaid implies that system 1 belongs to deuterium
and system 2, to hydrogen.
9.5. An ionized helium atom belongs to the class of
atoms known as hydrogen-like, for which the following
general series formula is valid:

; = R MZ2
( :2 - :2) 1

where Z is the proton number. The Rydberg constant for
an atom whose mass is M is

1
RM=R oo 1+m/M . (9.5.1)

If we ignore the difference between the Rydberg constants
for hydrogen and a helium ion, then it can be assumed
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that the lines of the first coincide with those of the second.
This occurs if

4 ( k~e - n~J = k;I - n;I ·
In the Balmer series, k == 2. We set nH = nHe == (X). Then

kH e == 4 and nRe == 6, 8, 10, 12, ....

In the spec LrUIH of a heli um ion, hetween these lines are
the lines 1'01' which nBc == 5, 7, 9, 11, .... These lines
are also shown in the figure accompanying the problem.
We note, in connection with formula (9.5.1), that since
R H e > RH , the lines of a helium atom correspond to
slightly higher frequencies than the corresponding lines
in the Balmer series.
9.6. For a doubly ionized lithium atom, Z == 3. For
this reason the spectral lines of the lithium ion are des-'
cribed by the general series formula

~ 1 1)
V-= 9R (-k2 --2- •

Li nLi

For the Balmer series we have k H == 2, whereby only the
lines. of lithium that obey the relationship 9/kLi == 1/4
can be found in the visible spectrum. Hence

k L i,: ===l6.
The last line in the Balmer series corresponds to a value
of the principal quantum number nH being equal to 6.
The corresponding line for Iithium exists at 9/nii == 1/62 ,

that is, at

nLi == 18.

Thus, in the spectral region of the first four lines of the
Balmer series the overall number of lines is 12 (nLi =
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18). The lines
with nLi = 9,12,15, 18lie close to the lines in the Balmer
series with nH == 3, 4, 5, 6. Since there is a small
difference in the values of the Rydberg constant, these
lines do not coincide exactly. The difference is somewhat
greater than in the case of the Pickering series.
9.7. The electric field in which the electron is moving is

(9.7.1)
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where r is the radius of the electron orbi t accordi ng to the
"classical" Bohr theory. In the ground state of the hydro­
gen atom, the radius of tho orbit is r1 == 5.20 X 10-11

.1ll.

Formula (9.7.1) then yields the following value [or the
electric field strength:

E == 5.15 X 1011 Vim,

which exceeds all practically attainable field strengths
by several orders of magnitude. However, if an electron
is moving along a circular orbi t which corresponds to
a value of the principal quantum number that d i Hers
from unity, the radius of such an orbit is

r = r 1n
2 ,

and the electric field strength proves to be inversely pro­
portional to n2

• If, say, n = 10, the electric field lies
within the limits of practically attainable fields. Indeed,
the ionization of highly excited stales of the hydrogen
atom by an electric field was actually observed in ex­
periments.
9.8. Optical transitions between the ground slate of
helium and the 218 and 238 states are forbidden by selec­
tion rules. Although the selection rules that forbid such
transitions are not absolute, they nevertheless permit
defining the 218 and 238 states as metastable with life­
times of the order of 10-3 s, which is an extremely large
time interval on the scale of atomic processes. Excitation
to such levels is possible in a discharge almost exclusively
due to electron impact. What is needed for continuous
generation of radiation is inverted population of levels.
This becomes possible if the lifetime on the higher level
exceeds considerably the lifetime on the lower level,
with the result that the lower level has time to "get rid"
of the electrons before new electrons arrive. Indeed, the
lifetime of the 28 and 38 atomic states is of the order
of 10-6 s, while the lifetime of state 2P is of the order of
10-8 s. In the first of the two transitions 38 ~ 2P and
28 ~ 2P the energy changes by a larger amount; hence
a quantum of a higher frequency corresponds to this
transition, and this frequency lies in the visible spectrum
(A, = 632.8 nm), while the second transition corresponds
to a quantum with a lower frequency, Iv = 1153nm, which
lies in the IR region.
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9.9.. Si nee the length of all the vectors is the same, the
absolute values of the angular momenta in all the states
are the same, too. If the orbital quantum number is l,
the magnetic quantum number m may assume 2l + 1
different values. The figure accompanying the problem
shows live different states. Hence, l == 2. The value of l
cannot exceed n - 1, whereby the minimal value of the
principal quantum number is 3. The values -2, -1, 0,
+1, +2 of the magnetic quanturn number correspond to
different orientations of the angular momentum vector.
9.10. In a uniform magnetic Iield , a magnetic dipole,
which is an object possessing a magnetic moment, expe­
riences onI y a torque. For a force to act on a magnetic
dipole, the field must be nonuniform. For an atomic mag­
netic moment this force is defined by the expression

dB
F=t-t--az-' (9.10.1)

where f.1 is the magnetic moment of the atom. In formula
(9.10.1) we assume that the vector of magnetic induction
of the magnetic field generated by the atom is oriented
along the lines of force of the external magnetic field and
its direction coincides with that of the induction B
of the external magnetic field or is opposite. In the first
case the atom is pulled into the region where the field is
stronger, while in the second case it is pushed out of that
region. In the Stern-Gerlach experiment, the beam of
silver atoms is sent through the (nonuniform) magnetic
field and splits into two beams in accordance with two
possible directions of the magnetic moment of a silver
atom. If there was no spatial quantization, the silver
atom would be oriented at random and the beam would
spread in all directions. The silver atoms in the beam
are in the ground state, whereby the difference in orienta­
tion is due to the different directions of the magnetic mo­
ment of outer electrons in silver atoms.
9.11. 'I'he minimal wavelength in the X-ray spectrum is
determined by the maximal energy which a bombarding
electron may transfer to the anode. This energy is eU
.and , hence,

ch
Am 1n == eU •

If the voltage is decreased three-fold, the minimal wave­
length increases three-fold, too. As the figure accompany-
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lng the problem shows, as a result of such an Increase 111.
the wavelength the short-wave peak, which is one of the
characteristics of the material of t.he anode, disappears.
Separate characteristic peaks may disappear even when
the wavelength corresponding to these peaks is longer
than Amln if to excite the quantum level from which the
transition that generates tho radiation with the wave­
length of a particul ar peak begi IlS all lHH.~I·gy higher than
eUo is required.
9.12. In inlinitel y deep potential well, the wave func­
tion at the boundary of the well (x = 0 and x = l) is
zero. Since tho figure accompanying the problem clearly
shows that the wave function does not vanish at the
boundary, we conclude that the well is of finite depth.
9.13. In a potential well of infinite depth the wave
function at the "walls" of the well must vanish. 'I'his
means that only states labeled by even numbers, e.g.
2, 4, 6, etc., may remain. The distance between the
nodes of a standing wave Iunction is equal to one-half
of the de Broglie wavelength:

A, h
2 == 2mv •

The maximal value of Iv is a, which means that the electron
velocity has a minimal value v == h/2ma, and hence the
minimal value of the electron energy is W min == h2/8ma2

•

If the width of the well decreases two-fold, the minimal
kinetic energy of the electron in tho well increases fOUI'­

fold.
9.14. If the initial kinetic energy of the electron in the
motion from left to right is E, to the right of the barrier
it will be E - P. In the first case the de Broglie wave­
length is

A1 == h/V 2mE,

while in the second it is

The wavelength ratio is in inverse proportion to the
refractive index ratio:
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The right region can be considered as heing less opt.ically
dense, whereby when the electron is moving from left
to right the phase is retained, while when the electron
is moving from right to left, the phase changes to its
opposite.
9.15. Front the viewpoint of classical mechanics, for
E < P this probability is zero in bot.h cases, while for
E > P it is equal 10 unit.y ("step" 1 ill Figures (a) and (b)
accompanying the answer). From the viewpoint of quan­
tum mechanics, however, in the first case for E < P

£
o......-.......-..---olJI-------

I... P .1

D

1

D
1

0.-------11-------

I. P .. I
((1)

Fig. 9.t5

the probability is also zero, whereas for E > P the prob­
ability is lower than unity (curve 2 in Figure (a) accom­
panying the answer), since there is a nonzero probability
of the electrons being reflected from the step, in other
words, a fraction of the electrons moving from left to
right begins to move in the opposite direction. Partial
reflection takes place even when the potential energy to
the left of X o is greater than the potential energy to the
right of X o rather than lower. For the potential barrier
depicted in Figure (b) accompanying the problem there
is a nonzero probability of the electrons tunneling through
the barrier even when E < P, but this probability does
not become equal to unity even when E > P (curve 2
in Figure (b) accompanying the answer). The passage of
electrons through the potential barrier when E < P
under the conditions that the barrier has a finite width
and that the potential energy to the right of the barrier
is equal to or less than to the left of the barrier became
known as the tunneling effect. This effect is encountered
in many atomic and nuclear processes and in the field
emission of electrons by metals and semiconductors. The
probability of electrons passing through the barrier for
E < P is the higher the lower and narrower the barrier.
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9.16. In region 11, the wave function does not. obey the
sinusoidal law; it falls off exponentially. This happens
wi thin the framework of classical mechanics when a negative

kinetic energy is assigned to the elec-
t tron, or E < P. The passage of the
I electron into region I I I, which is

forbidden from the classical stand­
point, can be observed in experiments if
the width of region I I is sufficiently
small (of the order of the electron wave­
length in region I) and if the differ­
ence between P and E is not too great
(see Problem 9.15). This phenomenon
(the tunneling effect) resembles the
partial passage of light across a

Fig. 9.16 narrow gap between two prisms (see
· the figure accompanying the answer)

with the incident light experiencing total internal
reflection in the first prism.
9.17. The statement that the energy of the vibrational
motion of atoms or molecules in a crystal lattice is nil
at absolute zero contradicts one of the main principles of
quantum mechanics, the uncertainty principle. If the
kinetic energy is zero, so is the momentum. But if an
atom or a molecule is at rest, its position is fixed. In
other words, each coordinate and the projection of mo­
mentum on the respective coordinate axis are known with
absolute accuracy. Meanwhile the wave properties of
particles permit determining the collection of a coordinate
and the respective projection of momentum within the
intervals Ilpx and ~x, where in accordance with the un­
certainty principle

~px~x> h/2n.

For this reason the energy of the atoms or molecules of
a crystal is not nil at absolute zero. The motion of these
objects is vibrational (zero-point vibrations), and the
energy associated with this motion is the zero-point
energy

1 h
Eo == T hv == 41t (0,

where co is the natural cyclic frequency of the vibration
of a particle in the lattice. The existence of zero-point
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vibrations has been proved in experiments. l'hey manifest
themselves in light scattering in crystals at temperatures
close to absolute zero.
9.18. The diffraction of electrons by a crystal obeys the
same Bragg law as X-ray di ffraction does:

2d sin e = k'A,.

In this formula A = h/mv is the de Broglie wavelength.
Substituting the necessary constants (the electron mass
and charge and the Planck constant) and transforming
the units of measurement, we arrive at the following
formula*:

(9.18.1)

According to this formula, diffraction maxima are ob­
served for the following wavelengths: Ao (k = 1), (1/2) Ao
(k = 2), (1/3) Ao (k = 3), etc., with the voltages that
determine the electron energy being U0' U0 V2, U0 V3,
etc. If on the horizontal axis we layoff the square roots
of the values of the accelerating voltage, as is done in
Figure (b) accompanying the problem, the current maxima
must be spaced by equal distances. In experiments,
however, this condition is not met exactly, and the smaller
the voltage the greater the deviation from this pattern.
The reason for this is that formula (9.18.1) contains the
energy (in electron volts) of an electron inside the metal,
and this quantity is the sum of the energy acquired by
the electron in passing the potential difference and the
di fference in potential energies of the electron inside and
outside the metal. Therefore, along the horizontal axis
in Figure (b) accompanying the problem we must layoff
V U + <D rather than VU, where <D is the internal po­
tential in the metal. The quantity measured in experi­
ments is, of course, U. Electron diffraction pat terns
obtained as a result of electron scattering on a metal
lattice make it possible to obtain <D.

* Here U is the potential difference through which the electron
travels and, hence, the electron energy expressed in electron
volts.

9.19. The stability of a nucleus is ensured by the fac~
that the Coulomb repulsive force experienced by e1ac r
proton in the nucleus is equal to the force of nUitSis
attraction (the nuclear force). The Coulomb force



off with distance relatively slowly (in inverse proportion
to the square of the distance), while the nuclear force
falls 0 ff very rapidly. For this reason the protons are held
in the nucleus only by the closest neutrons, while expe­
riencing the repulsive action of all the protons in the
nuc.leus, even those farthest from a given proton. Thus,
as the general number of nucleons grows, more and more
neutrons are required so as to compensate for the growing
action of the Coulomb repulsive forces.
9.20. According to the Pauli exclusion principle, a single
quantum level can carry no more than two identical
particles with half-integral spin. The directions of the
spins must be opposite. In a nucleus such particles are
the nucleons, protons and neutrons. Since these are dis­
tinct particles, there can be not more than four nucleons
on the lowest level-two neutrons and "two protons.
9.21. If IVO is the numher of radioactive atoms in the
radioactive sample at the beginning of counting and 'A
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is the decay constant, then at time t after the beginning
of counting the number of atoms will be

N = N oe-At. (9.21.1)

The rate with which this number changes is
dN '\
(It -:=;: - ANoe- rv t = - AN.

A counter registers only the radioactive particles that
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fly in its direction. The fraction of such partic.les in the
overall number of radioactive particles em it.ted by the
sample depends on the size and position of the counter
and can be characterized by a factor a (with a < 1).
Thus, the counting rate can he expressed in the form

i'=aI~~ 1= aNo"-e-?t.

Taking logs, we get

log y = log (aNo'A) - At.

To determine the half-life of the radioactive clement,
there is no need to measure the slope and find the A vs, t
dependence and, using the well-known formula, to eal- .
oul ato T]/2. Suffice it to layoff in any place on t.he vertical
ax is a segment equal to the logarithm of two (irrespective
of what logarithms are laid off on the vertical axis, base-10
or base-e) and draw through the end points of this seg­
merits straight lines parallel to the horizontal axis.
The points at which these straight lines intersect the
experimental straight line that represents the variation
in the rate of counting determine the boundaries of the
time interval in the course of which the counting rate
decreases by a factor of 2. Since the experimental law
representing the decrease in the counting rate with the
passage of time coincides with the law representing the
decrease in the number of radioactive atoms (9.21.1),
this time interval is the sought half-life.
9.22. A shift to the right by one pl ace in the Periodic
Table occurs as a result of a beta decay act. The mass
number does not chango in this act while proton number
increases by unity. Hence,

A shift to the left by two places occurs in alpha decay.
The mass number decreases by four, while the proton
number decreases by two:

11+2Cm -+- na,n-4 .+- :IIe.

'I'he JlH1SS num hor of the rosulting i sol.o pc of HI.OIlI a
differs from the initial num bor hy Iour un i l..~. the

Examples of such radioacti ve transforrrHlLio ll s are
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(9.23.1)

chains of transformations ill the 2~~U ann 2~~rrh Iumi lies:

238U _)-- 234Th --+ 234Ra -+ 234U ----* 23 0T h ,
92 so 9 1 n2 90

232T h ---+ 228Ra -+ 228 Ac -+ 228Th ~ 224 Ra.
90 RK 8n 90 ~~

9.23. In the course of the time interval dt the number of
nuclei of the new element (the "daughter" nuclei) changes
thanks to the emergence of new nuclei as a result of the
decay of initial (or "parent") nuclei and the departure
of new nuclei as a result of their decay:

dN 2 = N1Aldt - N 2A2 dt .

Here N I is the number of parent nuclei and N 2 is the
number of the daughter nuclei at the given moment.
According to the law of radioactive decay,

Nt===- N oe - Att.

Thus,

or
dN2 '"1 N '"1 N -A t
~+f\,2 2=l\.f oe t.

We start by considering the limiting cases.
(1) Al »A2 • If we rewrite (9.23.1) in the form

d (N 2/No) + A N 2 _ Iv -All
dt 2 No - t

e

and assume that after a small time interval we can set
e-At t = 0, we obtain

N N
_2 =~e-A2t

No No
With Al » A2 we can assume that N 20 = No, so that

N 2 === N oe - 'A.2t •

Physically this means that parent nuclei practically in­
stantly transform into daughter nuclei, which then decay
according to the law of radioactive decay with a certain
decay constant.

(2) Al -e; A2 • In this case the number of parent nuclei
can be assumed to remain constant over a sizable time
interval and is equal to No. This transforms (9.23.1) intod:2 = -(A2N2 - 'AtNo),

which. after integration yields

N..= ~ NlI(1-e-~2t).



Tho number of daughter nuclei tends to a constant (satu­
ration) value (see Figure (a) accompanying the answer):

N 2 ~c= ~: No. (9.23.2)

Of course, over a long time interval this number will
decrease in accord with the decrease of the number of
parent nuclei, whereby a more exact form of (9.23.2) is

AN
2

== _ 1 Noe-A]t.
A2

An example of the case with Al <{::: A,2 is the radioactive
decay of radi urn 2~:Ra wi th a decay constant equal to
1.354 X 10-11 S-1 (a half-life of 1622 years). Its product

to

~N
'\2 0

N2
--------- N2

(0)

Fig. 9.23

is radon 2::Rn with a decay constant equal to 2.097 X
10-6 S-1 (a half-life of 3.825 days). If radium is placed
inside a closed vessel, already after ODe month the amount
of radon in the vessel will be only 0.4 % less than the
equilibrium amount, while the equilibrium amount, as
shown by (9.23.2), constitutes only 6.46 parts to a million
of the initial number of radium atoms.

To find the overall dependence of N 2 on t, we must
integrate Eq. (9.23.1). The solution has the form*

N = AtNo (e-At t - e- A2t) .
2 ),,2-At

This expression has a max.imum at a value of t equal to
tm , which can be found if we nullify the derivative
dN2/dt:

t - In A2-In Al
m -- A2- Al •

"The N 2 vs. t curve is depicted in Figure (b) accompanying
the answer.
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• To integrate Eq. (9.23.1), we introduce a new variable,
z = N 2c A2t • This yields

~__ ( dN2 _L Ii N ) eA2t -A2 t~- A 'V ,-/..1 tdt - dt I "'2 2 ,e dt -- J. ot \

dZ=AtNoeOll2-At)t dt, z== A1No (e-(A2- Al)/_1),
A2- Al

N - AtNo (-Al t _ -"-2t)
2-" Ii e e .

/\'2-"'1

9.24. As the electron moves in the Wilson chamber, it
gradually loses its energy to ion formation, and it is on
these ions that drops of mist Iorm, which make visible
the track of the electron. This loss of energy results in
a loss of speed, which means that the radius of curvature
of the electron trajectory in the external magnetic field
bee-ames smaller, since

R = mv/eB.

The wider part of the spiral corresponds to the beginning
of the track, and the narrower part corresponds to the
end of the track. If we take into account the negativity
of the electron charge and the direction of its motion in
the chamber, we can conclude that the magnetic field is
directed toward the reader.
9.25. According to Pauli's hypothesis, which was veri­
fied in experiments, simultaneously with the escape of an
electron the nucleus emits a neutrino (more precisely,
an antineutrino), which is the particle that carries off
a fraction of the energy released in beta decay and which
has a momentum whose vector sum with tho nucleus
momentum and the electron momentum is zero:

zxA
. -+- z+t

y A+ _1~O +~.

9.26. The proton and neutron masses can be considered
practically equal. When the proton and the neutron col­
lide, the scatteri ng angle after collision will be 90°,
whereby after collision the direction of the neutron veloc­
ity will also make an angle of 45° with the initial direc­
tion of the proton velocity. Thus, after collision the
proton and neutron energies are practically the same.
9.27. A chango in the direction of motion (following­
a collision act) by an angle greater than 90° is possible
if the mass of the incident particle is smaller than that
of the particle that initially was at rest (in the laboratory
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system). The mass of the atom and molecule of hydrogen
is smaller than the mass of an alpha particle, while the
mass of helium is equal to the mass of an alpha particle.
The gas closest to helium in the Periodic Table that has
a mass greater than that of the alpha particle is nitrogen.
9.28. The relative velocity, according to the relativistic
formula for velocity addition, is

Vl+ V2

vrel== 1+V1V2JC2 •

The velocity of the electron flying away from the aecele­
rator with respect to the accelerator is

V:-= 2v
a 1+V2Jc2'

while the velocity of the electron flying toward the ac­
celerator is

Vb ~ o.
The relative velocities of the electrons with respect to
each other are:

v _ 2v
ab - 1+V2/ C2

for the electron moving away from the accelerator, and

V - _ 2v
ba - 1+v2/ C2

for the electron moving toward the accelerator, that is,
they are equal in absolute value.

For the sake of an example we assume that v = O.ge.
In this case the velocity of the electron flying away from
the accelerator and the relative velocities of the electrons
are related through the following formula:

Va=Vab= -Vba= 1:~~81 c=O.9945c.

9.29. Tho statement carries no physical meaning what­
soever. First, there is not a single physical quantity
that can transform into another physical quantity (time
cannot transform into area, field strength into length,
and so on). Second, for processes in relation to which
this statement is usually made, the common conservation
laws, the energy conservation law and the mass conserva-
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tion law, are valid, that is, if isolated systems arc con­
sidered. In the case at hand, these balance equations are
as follows:

E* = E + h»

for energy (here E* is the energy of the excited atom, E is
the energy of the atom in the ground state, and hv is the
photon energy), and

m* = m + flo

for mass (here m* is the mass of the excited atom, m is
the mass of the atom in the ground state, and ~o = hv/c2

is the photon "mass").
The first balance equation expresses the law of energy

conservation and the second, the law of mass conservation
(for the same process).
9.30. The ratio of the mass of a moving particle to the
rest mass of that particle is

m 1
mo y 1- v2/e2 •

The kinetic energy acquired by a particle in an accelerator
is determined by the following di fference:

Wkin ~ mc2 - moc2
:.=:: moc2 ( V 1 - 1) ,

1- v2/c2

whence

For a fixed value of Wk 1n , the ratio mlm., is the smaller
the greater rno is and, hence, curve 2 corresponds to the
particle with the greater rest mass.
9.31. If the kinetic energy of the particle is Wkin, its
velocity can be found from the equation

Ulkin = moc2 (y 1 - 1) ,
. 1-V2/ C2

with the result that
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If Wk 1n ~ moc~, we arrive at an expression for the velocity
that is identical to the one following from classical me­
chanics and electrodynamics:

v == V2eUoNImo·

The voltage across the cylinders changes its sign in the
course of a half-period T/2 = 1/2v, whereby the length
of the cylinders must increase according to the law

l === _1_ .. /' 2eUo N1/2
N 2v V rna •

However, as Wk 1n grows, the velocity grows slower and
slower. For instance, for v = 0.87c, v == 0.89c, and
v = O.90c we have, respectively, W k 1n == moc2 , 21noc2,

and 3moc
2

• For sufficiently high energies the velocity of
the particle approaches that of light and the length of
the cylinders does not change any more: l == clv,
9.32. The operation of a cyclotron is based on the fact
that the time a charged particle takes to perform a full
circle in a magnetic field does not depend on the particle's
velocity. The time it takes the particle to complete
one-half of a full circle, that is, the time in the course of
which the electric field between the Dees reverses its
direction, is sunolBe. As the particle is accelerated, its
mass grows according to the formula

m= lno

V1-v2jc2 •

The particle moving inside a Dee will gradually begin
to get out of step with oscillatory electric field between
the Dees.

The electron mass is doubled already at an energy equal
to 0.51 MeV, whereby the discrepancy between the time
it takes the electron to make a half-circle and the period
of reversal of direction of the field between the Dees
becomes noticeable already at accelerating voltages of
the tens of kiloelectronvolts. This, naturally, limits the
possibili ty of accelerating to high energies electrons in
cyclotrons.

For ions, whose rest mass is greater than the electron
rest mass by a factor of 103 , 104 or even 105

, the effect
of increase of mass with velocity manifests itself at much
higher energies. But here, too, there is a limit of acce-
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leration of such particles in () cyclotron. To overcome this
difficulty, other types of accelerators have been designed,
in which the frequency of the electric field or the magnetic
field is varied in the proper manner (separately or
together).
9.33. The energy of the quantum that flies upward de­
creases while that of the quantum flying downward in­
creases, as a result of which the Irequency of the first
gets lower and that of the SCCOJld, increases. The di Iicronce
proves to be so small, that could be detected only after
a discovery made by Mossbauor, whose name was later
given to this effect. An experiment in "weighing" the
photon was conducted later by Pound. The results of
these experiments are in full agreement with the theory
of relativity. The present problem constitutes a sirnplified
and schematized version of the idea of Pound's experi­
ment.
9.34. Cerenkov radiation appears when the speed of
light in the given medium is lower than the electron

velocity. From the figure accom­
panying the answer we can see
how the light wave is formed. In
the time that it takes the electron
to cover a path AB the light. covers
a distance AC, with

IACI c'
Fig. 9.34 lABI == v '

where c' = cln is the speed of light in the given medium.
The envelope of the waves emitted by different points
constitutes the wave front BC. The figure accompanying
the answer shows that

IACI
~::::::cos8.

The refractive index is

c
n::=: V cos e ·



Postface

Solu lion or l.hp conclud ing problems in this Collection falls 011 the
period when you are completing the general physics course in your
college. It would be a mistake, however, to think that your studies
in physics ha ve como to an end. Physics wi Jl "pursue" you all your
life unless, of course, you change your profession as enzincer to
that of opera singer or sports commentator. 0

Today numerous lipids or humuu activity require a knowledge 01
physics, Irotn ustronuutics to In icrobiology and Irorn rad io engi-
neering to archeology. .
But what portion of the physics studied in college wi ll you find
most needed in your future work? The luws:' Naturally, one must
know the main laws of physics, but I would not call this the most
important aspect of your knowledge. The expression of a law or
its mathematical Iormulatlou can be found in a reference book.
This is even truer of the many specific formulas, such as the Poi­
seuille formula for viscous flow or the formula for the capacitance
of a cylindrical capacitor.
Of course, the more formulas and laws that you remember the
less frequently will you have to look into reference books and the
more productive your work, And yet among the qualities that an
engineer must have I would put first the ability to grasp the method
required for a project. The aim of this book is to inculcate in the
reader a taste for the physical method of thinking.
Solution of the majority of physical problems can be divided
into four stages.
The first deals with the physical model of the phenomenon in
question. A qualitative picture of the phenomenon is formulated,
allowing for the factors that could be important. The second in­
volves a mathematical model. An equation is set up that in accor­
dance with an assumed law connects the factors introduced in the
first stage. In the third stage mathematics steps in, so to say. By
so] ving algebraic, trigonometric, or differential equations one
can obtain the sought quantity in the Iorrn of an explicit [unction.
The difficulties that arise in the third stage are more easily sur­
mounted if the student has mastered the respective sections of
mathematics. Mathematics for the engineer is what a cutting tool
is for the lathe operator or a soldering iron for tho assembler of
electronic circuits.
Once the problem is solved, the very important fourth stage c?mes
into the picture, namely, interpretation of the result obtained.
The fourth stage is an analysis of the effect of the various para­
meters on the quantity of interest to the investigator.
To illustrate what has been said, let us examine damped oscilla­
tions, a common phenomenon known to everyone but not simple,
nonetheless.
For instance, after performing several free oscillations, a pendulum
finally stops; so does a load on a spring. The forces acting on the
load arc the elastic force exerted by the spring and the drag exer~ed
by the surrounding medium (air). \Ve assume that the elongation
of the spring is small and, hence, the elastic force obeys Hooke's
law. We also assume that the drag is proportional to the rate
of motion of the load. All this constitutes the physical model of
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the phenomenon. Its mathematical model can be built by writing
Newlon's second law of motion: the mass of the load multiplied
by the acceleration equals the sum of the projections of the forces
acting on the load. This is a second-order differential equation,
which can be solved (or integrated) if we consider the existence
of two constants that depend on the initial data (the third stage).
The resulting rather cumbersome formula expresses the time
dependence of the load's displacement. The parameters in the
formula are the mass of the load, the elasticity of the spring,
and the resistance coefficient of the medium.
The analysis of the solution (the fourth stage) shows that a certain
ratio of the parameters may produce periodic damped oscillations
while another ratio may lead to aperiodic motion.
Such an analysis is given in a number of problems in this Collection.
Take a careful look at their solution and pinpoint the four stages
mentioned earlier. Give special consideration to the drawings
accompanying the problems. Unfortunately, many students per­
ceive a diagram as a simple illustration to be rnemorized and later
drawn when necessary. As a result one sometimes gets a drawing
that resembles a cartoon more than a physical diagram.
Often a student constructs the necessary curve more or less cor­
rectly hut does not know the quantities that must be laid off on
the axes. It is also difficult to overestimate the importance of
knowing how to interpret a diagram. This requires, among other
things, the skill of knowing how to "read" a diagram in the mathe­
matical sense of the word, that is, understand that the derivative
is positive where the curve goes up and negative where it goes
down, and is zero at points of maxima and minima. In segments
where the curve is convex downward the second derivative is
positive; where it is convex upward the second derivative is nega­
tive. At inflection points the second derivative vanishes.
One must not forget that physics is an experimental science.
In some cases an experiment helps one to find a sought law, disco­
ver a new phenomenon, or clarify certain aspects of a known effect;
in others it serves as strict judge of .the validity of a theory. There­
fore, one must always prepare an experiment with care, understand
the workings of the various devices involved, and analyze the
results.
I believe that if you have solved or studied the solution of a large
number of problems, the basics of the physical method of thinking
have become clearer.
In conclusion I would like to hope that after you have finished
college, far from being forgotten, physics will prove to be the
real basis of your further development as an all-round person in
this age of scientific and technical progress.





Some Fundamental Constants*

Energy equivalent of m1>

Neutron rest mass

Energy equivalent of me
Proton res t mass

Symbol Numerrcal Value

G 6.672 X 10-11 x.m2.kg-2

c 299792458 m ·S-1 (exact**)
~to 4n X 10-7 H· m-1 (exact***)

=1.25663706144 H·m-1

80 8.854 1878 X 10- 12 F ·m-1

h 6.62618 X 1G-34 J. s
Ii i .05459 X 10-34 J. s

amu 1.66057 X 10-27 kg
931 .502 \leV

nZe 9.10953 X 10-31 kg
:::::: 5.48580 X 10--1 amu
0.511 003 Me"

mp 1 .67265 X 10-27 kg
== 1J)07 2765 amu
938.28 I\Iev

m n 1 .674954 X 1()-2~ kg
= 1 .008 665 amu
939.57 l\leV

e 1 .60219 X 10-19 C
==4.80324 X 10-10 esu

NA 6. U2204 X 1023 mol-1

F 9.64846>< 10- 4 Cvmol"
R 8.3144 l ·mol-1 ·K-1

Vm 22.4138 X 10- 3 In3. mol-1

k 1 .38066 X '10-23 J. K-1
a 5.6703x10-8 W·m-2 · K- J

b 2,8978 X 10-3 Dl·K
ROC' '1 ,097 3731 X 1t)7 m- 1

of A 2.426309 X 10-12 m
1. = A/2rr 0.386 159 X 10-12 m

"'0 n .529 177 X 10-1 0 m

Quantity

Energy equivalent o.f m n
Elementary charge (elect-
.ron charge)
Avogadro constant
Faradav constant
~lo1ar ga8 constant
Molar volume of ideal
gas at S.T.P.
Boltzmann constant
Stefan- Boltzmann cons-
tant
Wien constant
Rydberg constant
Compton wavelength
the electron
Bohr radius

Gravitational constant
Speed of light in vacuum
Permeabil ity of vacuum

Permittivity of vacuum
Planck constant
Planck-Dirac constant
Atomic mass unit
Energy equivalent of
L amu
Electron rest. mass

* The numerical values (If the constants arc given with an accuracy
such that corrections may OCCur only b)? sevcra 1 units in the last digit.

** According to definition.
*** According to the resolution of the Seventeenth Gener-al Conference

on Weights and Measures, the value of this constant is defined as not sub..
ject to further refinement.
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